Oivaline jäätis. Miks sool sulatab jää?

Franco Bagnoli, Firenze ülikool, Itaalia

Talviti puistame tänavatele soola, et jää ära sulaks. Teadusteatris võib seda sulamist näidates olla üsna kindel, et küsimusele, kas temperatuur seejuures tõusis või langes, vastatakse, et tõusis. Aga ei! Temperatuur langeb isegi nii palju, et sellega võib etenduse lõpetuseks jäätist valmistada [1].

Selle nähtusega võib ka endale viga teha [2] (kui keegi ei usu, paluge neil jääkuubikut koos soolaga peos hoida). Selge see, et vaatajate tähelepanu saab lihtsalt köita, valmistades mõne minutiga jäätist, ainult tavalist köögikraami kasutades (st ilma vedela lämmastikuta). Ometi ei ole nähtust kuigi kerge seletada, sest siin ei saa kaalutlustes toetuda ainuüksi energiale.

Tõepoolest, veemolekulid ja keedusoola ioonid (naatrium- ja kloriidioonid) eelistavad energeetilisest vaatepunktist lähtudes püsida eraldi ja seda nad teevadki, kui temperatuur on alla -21°C1.

Jooniselt 1 on näha, et kloriid- ja naatriumioonid (laenguga), sobituvad hästi polaarsete veemolekulide vahele, aga löövad seejuures segi nii jää kui ka soola korrastatud struktuuri. Nagu sulamisel, nii ka siin on segu stabiilne kõrgel temperatuuril ja eraldi kristallid on stabiilsed madalal temperatuuril, alla -21°C.

Niisiis, miks temperatuur langeb, kui sool seguneb jääga? Tagasi eelmise väite juurde. Kaootilised struktuurid on stabiilsed kõrgetel temperatuuridel, korrastatud struktuurid madalatel temperatuuridel. Teine variant on selgelt energeetiliselt eelistatud, aga esimene? Siin peame juurde tooma entroopia kontseptsiooni. Entroopia (S) on võimalike paigutuste arv (logaritm sellest arvust).

Vaadates ühemõõtmelist molekulide paigutuse mudelit (joonis 2) võib märgata, et võimalike paigutuste arv, mis annavad korrastatud ja kaootlise struktuuri, on erinev. Kahte tüüpi paigutuse suure energeetilise erinevuse korral on eelistatud struktuuriks korrastatus koos juhuslike ja kohalike fluktuatsioonidega (temperatuuril üle absoluutse nulli ja klassikalise füüsika raames). Kui aga energiate vahe ei ole väga suur, juhtub fluktuatsioone palju sagedamini. Kui korrastatus on rikutud, on selle taastamine keeruline, sest kaootlisi seisundeid on nii palju ja nad pole energeetiliselt kättesaamatud. Samas on aga ainult üks korrastatud seisund.

Võtame nüüd appi vabaenergia kontseptsiooni G=U-TS, kus U on energia ja T on temperatuur. Süsteemi stabiilsus on määratud G miinimumiga. Valemist on näha, et temperatuur annab võidu energiale kui ta on madal, aga entroopiale (millel on miinusmärk) kui on kõrge.

Kui soola lisada jääle temperatuuril üle -21°C, püüavad molekulid saavutada stabiilset paigutust segunemisega. See aga vajab energiat jää vesiniksidemete lõhkumiseks ja soola lahustamiseks. Jää sulamissoojus on 6,01 kJ/mol ja naatriumkloriidi lahustamiseks kulub 3,87 kJ/mol.

Ja nüüd küsimus neile, kes kasutavad Rahvusvahelist Mõõtühikute Süsteemi (SI). Miks on Fahrenheiti skaala nii veider ja miks selle nullpunkt on (umbes) -18°C?

Viited:
[1] Steve Spangler, The Spangler Effect – Homemade Ice Cream,
https: //www.youtube.com/watch?v=Y5XzhcDq5Bw.
[2] Salt and ice challenge,
http://en.wikipedia.org/wiki/Salt_and_ice_challenge.
[3] Fahrenheiti skaala, https://et.wikipedia.org/wiki/Fahrenheiti_skaala


 1 Seepärast on kasutu soola jäätunud tänavatele puistata, kui temperatuur on madalam.

2 Daniel Gabriel Fahrenheiti (1686–1736) eluajal oli jäävee ja soola segu madalaim temperatuur, mida sai kerge vaevaga, ilma laboriseadmeid kasutmata saavutada. Selleks kasutati võrdseid jää ja keedusoola koguseid ning segu temperatuur määras Fahrenheiti skaala nullpunkti. 100 kraadi vastas (umbes) kehatemperatuurile [3]. Sellise skaala eeliseks on, et negatiivseid temperatuure ei lähe igapäevaelus kunagi tarvis ja et tänapäevasel, täpsustatud skaalal on vee keemise ning külmumise punktide vahe 180 kraadi, mis vähendab komakohtade kasutamist temperatuuri mõõtmisel.