Lorentzi jõud

Selleks, et kirjeldada laengukandjate liikumist elektriväljas, mis tekib magnetvälja muutumisel, peame kõigepealt tutvuma magnetväljas liikuvale laetud osakesele mõjuva jõuga. Seda jõudu nimetatakse hollandi füüsiku Hendrik Antoon Lorentz'i (1853 – 1928) auks Lorentzi jõuks.

Juhtmelõigule, mille pikkus on  ja milles kulgeb vool tugevusega , mõjub teatavasti magnetväljas induktsiooniga magnetjõud . Selle jõu suurus on leitav Ampère'i seadusest (valem 1.12)

kus on nurk voolu suuna ja magnetvälja suuna vahel. Voolu olemasolu tähendab laengukandjate suunatud liikumist keskmise kiirusega . Mõistagi osalevad laengukandjad ka kaootilises (kindla suunata) liikumises, aga see meid praegu ei huvita. Jõud Ampère'i seaduses summeerub üksikutele liikuvatele laengukandjatele mõjuvatest Lorentzi jõududest. Seega tuleb Lorentzi jõu leidmiseks jagada juhtmele kui tervikule mõjuv magnetjõud liikuvate laengukandjate arvuga :

Vaatleme laengukandjaid, mis liiguvad keskmise kiirusega  läbi silindrikujulise juhtmelõigu (J.2.3).

Kui juhtmelõigu pikkus  on parajasti võrdne korrutisega (Mehaanika kursuse valem ), siis jõuavad kõik silindris sisalduvad laengukandjad aja jooksul juhtmelõigust läbi tagumise otsapinna väljuda. Laengukandjatel, mis on tagumisele otsale lähemal kui , kulub selleks mõistagi seda vähem aega, mida väiksem pikkus neil läbida tuleb, aga aja jooksul väljuvad kõik laengukandjat. Nende kogulaeng on , kus on ühe laengukandja laeng.

Voolutugevuse definitsiooni (valem 1.1) põhjal saame, et:

Järelikult on Lorentzi jõu vektori pikkus esitatav kujul

kuna juhtmelõigu pikkuse  ja laengukandjal selle läbimiseks kulunud aja suhe võrdub laengukandja suunatud liikumise kiirusega . Niisiis mõjub laengut omavale ja kiirusega liikuvale osakesele magnetväljas induktsiooniga  Lorentzi jõud

kus on nurk osakese liikumissuuna (kiirusvektori) ja magnetvälja suuna (B-vektori) vahel (J.2.3). Kuna positiivse laenguga osakesed liiguvad voolu kokkuleppelises suunas, siis võib neile mõjuva Lorentzi jõu suuna määrata vasaku käe reegli abil, mis antud juhul kõlab järgmiselt. Kui vasaku käe väljasirutatud sõrmed näitavad positiivselt laetud osakese liikumise suunda ja magnetvälja jõujooned tulevad peopessa, siis väljasirutatud pöial näitab osakesele mõjuva Lorentzi jõu suunda (J.2.4).

Elektroni kui negatiivselt laetud osakese korral on Lorentzi jõu suund eelnevale vastupidine, sest valemisse 2.1 ilmub miinusmärk. Elektronile mõjuva Lorentzi jõu suunda näitab analoogiliselt paikneva parema käe pöial.

Tasub rõhutada, et Lorentzi jõud mõjub laetud osakestele alati risti nii liikumissuuna kui ka magnetvälja suunaga. Seetõttu ei saa Lorentzi jõud liikumisel tööd teha. Ta võib vaid muuta liikumise suunda. Kõige tugevam on Lorentzi jõud liikumissuunaga ristuvas magnetväljas. Sel juhul ja järelikult

Kui laengukandja kiirusvektor on risti magnetvälja suunaga (B-vektoriga), siis paneb Lorentzi jõud vaakumis asetseva laengukandja liikuma piki ringjoont ümber magnetvälja suuna, toimides kesktõmbekiirendust andva jõuna. Kui laengukandja liigub piki magnetvälja suunda (v- ja B-vektorid on samasihilised), siis Lorentzi jõudu ei teki, sest on ja seega ka .

Lorentzi jõu mõju kohta on ka palju demoeksperimente, kus elektronkiir magnetvälja mõjul oma suunda muudab.

Selgitavad joonised selle katse kohta:

Kui v- ja B-vektorite vahel on suvaline nurk, siis võime laengukandja kiiruse lahutada kaheks komponendiks: B-vektoriga ristuvaks ja B-vektoriga paralleelseks . Ristuva komponendi olemasolu põhjustab laengukandja täiendava ringjoonelise liikumise ümber magnetvälja suuna. Sellega kaasneb laengukandja liikumine kiirusega piki magnetvälja suunda. Tulemusena liigub laengukandja mööda kruvijoont (ruumilist spiraali). Nii liiguvad näiteks kosmilise kiirguse laetud osakesed Maa ionosfääris piki spiraale, mille telgedeks on Maa magnetvälja jõujooned. Pannes kosmilise kiirguse osakesed ümber Maa spiraalima, kaitseb Maa magnetväli otsese kosmilise kiirguse eest kõike elusat Maa peal.