Takistuse sõltuvus temperatuurist

Joonis 1.5. a

Temperatuuri tõustes väheneb metallis vabade elektronide triivikiirus, kuna intensiivistub kristallvõre aatomite võnkumine. See takistabki elektronide liikuvust ja metalli takistus kasvab. Katsed näitavad, et metalli takistuse sõltuvus temperatuurist on ligikaudu lineaarne (joonis 1.5. a).

Selle sõltuvuse võib kirja panna valemiga, kus  on takistus juures,  ( või ) takistuse temperatuuritegur ja temperatuur Celsiuse kraadides.

Takistuse temperatuuritegur on puhastel metallidel suurusjärgus , näiteks volframil .

Lülitades toas põlema algul toatemperatuuril oleva hõõglambi, tõuseb volframist hõõgniidi temperatuur kiiresti rohkem kui kaks tuhat kraadi ja hõõgniidi takistus ligi kümme korda. Hõõglamp kipubki läbi põlema sisselülitamisel, mil tema takistus on veel väike ja lambis eralduv võimsus umbes korda suurem kui stabiliseerunud tööolukorras. Elektrilistes küttekehades kasutatakse tavaliselt sulameid, mille takistuse temperatuuritegur on väike. Näiteks nikeliinil on see umbes  ja elektripliidi takistus on külmalt ja kuumutatult praktiliselt ühesugune. On aineid, mille takistuse temperatuuritegur on negatiivne, st takistus temperatuuri tõustes väheneb. Elektrolüütide, grafiidi ja pooljuhtide takistus väheneb mittelineaarselt.

Teades keha takistuse sõltuvust temperatuurist, saame seda keha kasutada näiteks takistustermomeetri andurina: vooluallikaga ühendatud anduri temperatuuri muutus põhjustab takistuse ja voolutugevuse muudu. Voolu muutust on aga mugav mõõta, salvestada, töödelda ning protsesside automatiseeritud juhtimisel rakendada.

20. sajandi alguses avastati nähtus, kus metalli takistus muutus väga madalal temperatuuril hüppeliselt nulliks. Tahke elavhõbedaga toimus see temperatuuril  (joonis 1.5. b). Sellises olukorras voolu soojuslik toime kaob ja kord liikuma pandud vool ei lakkagi. Hiljem avastati ülijuhtivus veel paljudel ainetel ja ka kõrgematel temperatuuridel. Kui saaksime ülijuhtivuse tekitada looduses esinevatel temperatuuridel, saaksime elektrienergia edastamisel esinevaid soojuslikke kadusid vältida. On valmistatud aineid, milles ülijuhtivusele üleminek toimub kõrgemal temperatuuril, näiteks  juures.

Ülijuhtivus

Elavhõbeda ülijuhtivuse avastas 1911. aastal hollandi füüsik Heike Kamer­lingh- Onnes. Hiljem tehti takistuse kadumine kindlaks ka teistes ainetes. 1986. aastal avastasid saksa füüsik Johannes Georg Bednorz ja šveitsi füüsik Karl Alexander Müller rühma aineid, mille ülijuhtivus tuli esile juba vedelas lämmastikus. Ülijuhtivuse uurimise eest on saadud mitmeid Nobeli füüsikapreemiaid.