Elektromagnetlaine ja valguslaine
Meenutus Mehaanika kursusest: sellel graafikul on kujutatud võrrandiga x = 0,6 sin (2p/30 t) kirjeldatav võnkumine.

Elektromagnetlainet kirjeldakse samade suurustega, mis on meile tuttavad Mehaanika kursuses mehaaniliste lainete õppimisest: amplituud, hälve, lainepikkus, periood, sagedus, ringsagedus, faas ja levimiskiirus. Käesolevas kursuses kirjeldame me nende suuruste abil E-vektori ja B-vektori ajalist käitumist. Elektrivektori kohta kirjutame harmoonilise võnkumise võrrandi kujul

kus on E-vektori hetkväärtus ehk hälve,  selle vektori amplituudväärtus, on aeg, on ringsagedus ja siinusfunktsiooni argument  on laine faas. B-vektori kohta kirjutame vastavalt , kus on B-vektor ja selle ampli­tuudväärtus. Selliseid laineid saab esitada kahesuguste graafikutega. Ühel juhul näidatakse, kuidas ühes kindlas ruumipunktis muutub aja jooksul E-vektori väärtus. Teisel juhul näidatakse, millised on E-vektori väärtused ühel ajahetkel mingis ruumipunktis.

J.3.4 Valguslaine E-vektori ruudu muutumine ajas. Punktiiriga on tähistatud muutumatu keskväärtus E2kesk. E-vektori ruudu keskväärtust on võimalik eksperimendis mõõta.

Valgus on üks elektromagnetlainete liik. Kuid käesolevas kursuses ei kasuta me valguslaine kirjeldamisel magnetvälja, räägime ainult E-vektorist. Sellisel lihtsustusel on vähemalt kaks põhjust. Esiteks on elektromagnetlaine moodustavad E-vektor ja B-vektor risti ning nad võnguvad samas faasis (vaata J.3.3). Järelikult ei ole meil tarvidust neid mõlemaid välja joonistada, kui me teame üht siis teame automaatselt ka teist. Ja kuna vaid kahemõõtmelist lainet on võimalik korralikult paberil või arvutiekraanil kujutada, siis jäetaksegi B-vektor tihti vaatluse alt välja. Teine põhjus seisneb selles, et valgusaistingu silmas või signaali mõnes tajuris tekitab just valguslaine elektriväli, mõjudes neis olevatele elektronidele.

Valguslained eristuvad teistest elektromagnetlainete liikidest selle poolest, et nad tekitavad inimesel valgusaistingu. Selliste lainete sagedus jääb vahemikku 3,95·1014... 7,9·1014 Hz ja lainepikkus vahemikku 760...380 nm.

J.3.4 Valguslaine E-vektori ruudu muutumine ajas. Punktiiriga on tähistatud muutumatu keskväärtus E2kesk. E-vektori ruudu keskväärtust on võimalik eksperimendis mõõta.

Kõiki füüsikalisi suurusi peab olema võimalik mõõta. Aga E-vektori muutumissagedus on ca 1014 Hz ja nii kiiresti muutuvat suurust pole võimalik ühegi riistaga mõõta. Sellepärast kasutatakse E-vektori keskmist väärtust. Täpsemalt öeldes, kasutatakse E-vektori ruudu keskväärtust E2kesk. See on ühe laine korral muutumatu suurus ja seda on võimalik mõõta.

Suurust, mis on võrdeline E2kesk-ga, nimetatakse valguslaine tugevuseks ehk valguse intensiivsuseks:

kus  on võrdetegur. Intensiivsus näitab valgusenergia hulka, mis ajaühikus langeb pinnaühikule. Selle mõõtühikuks on

Mida suurem on E-vektori amplituud, seda suurem on ka E2kesk ja seega ka suurem valguse intensiivsus. Selline seos kehtib kõigi elektromagnetlainete korral.

Olukord on sarnane teiste lainetega. Näiteks madalad, väikese amplituudiga veelained ei lõhu merekallast, küll aga kõrged lained, millel on rohkem energiat.

Valguslaine ei ole mingisuguse keskkonna võnkumine nagu veelaine on vee võnkumine. Valguse korral muutub ainult E-vektori väärtus. Järelikult pole valguslaines ka mingeid laineharjasid ega -nõgusid. On ainult E-vektori maksimaalsed ja minimaalsed väärtused.

Valguse intensiivsuse asemel kasutatakse valgustehnikas mõistet kiiritustihedus, mida mõõdetakse ka ühikutes W/m2. Et saada ettekujutus sellise ühiku suurusest, võib aluseks võtta fakti, et südasuve keskpäeval, selge ilmaga on Eestis päikesevalguse intensiivsus ehk kiiritustihedus maapinnal veidi vähem kui 700 W/m2.

700 W/m2 tähendab seda, et kui ühele ruutmeetrile langev päikesevalgus ühte punkti koondada, siis saakme 700W võimsusega "päikesepliidi". Sellest võimsusest täiesti piisab küpsetamiseks.

Valguse kiirus on erinevates keskkondades erinev. Kehtib seaduspärasus, et mida suurem on keskkonna tihedus, seda väiksem on seal valguse kiirus. Näiteks õhus normaaltingimustel on valguse kiirus v = 2,9970·108 m/s, mis on praktiliselt võrdne valguse kiirusega vaakumis. Seevastu ühes suurema tihedusega läbipaistvas aines, teemandis, on valguse kiirus punase valguse jaoks ca 1,24·108 m/s.

Valguslainete ja mistahes elektromagnetlainete levimist kirjeldatakse samamoodi nagu lainete levimist mehaanikas. Laine levimist ruumis kirjeldab lainefront (J.3.5). Lainefront on pind ruumis, kus kõik laine punktid võnguvad ühes faasis. Näiteks, kui veelaineid ülevalt vaadata, siis lainefrontideks võivad olla kõik laineharjad.

Joonistel esitatakse lainepinnad iga perioodi järel, lainepindade vahekaugus on võrdne ühe lainepikkusega.

J.3.5 Tasalaine ja keralaine kujutamine joonisel.

Lainefrontide kuju järgi nimetatakse ka lainete tüüpe. Elektromagnetlainete uurimisel on kõige olulisemad neist keralained ja tasalained. Esimesel juhul on lainefrondiks kerapind ehk sfäär, mida joonisel kujutatakse ringjoonena. Lainefrondid moodustavad sel juhul kontsentriliste sfääride (joonisel ringide) süsteemi. Teisel juhul on lainefrondiks tasand, mida joonisel kujutatakse sirge joonena. Lainefrondid moodustavad sel juhul paralleelsete tasapindade (joonisel sirgete) süsteemi (J.3.5).

Lainefrontide ristsirgeid nimetatakse kiirteks.

Punkvalgusallikast hakkab ühtlases keskkonnas levima keralaine. Kui laine on allikast juba väga kaugele jõudnud, siis muutuvad lainefrondid väiksemas ruumipiirkonnas paralleelseteks ja seal võib rääkida tasalainest (J.3.6).

Kui on teada üks lainepind, siis järgmise saab leida, kasutades Huygensi printsiipi: lainefrondi iga punkt on uue laine allikaks. Neid uusi laineid nimetatakse elementaar- või sekundaarlaineteks, mis on keralained. Järgmise lainefrondi leidmiseks tuleb leida sekundaarlainete puute- ehk mähispind (J.3.7).

Tõkestamata laine levib ainult frondi esialgse levimise suunas. Teistes suundades lained kustutavad üksteist, st alati leidub mingi sekundaarne allikas, kus võnkumised on vastandfaasis sinna jõudva lainega ja lained kustuvad.