Kõige lihtsamad jadad on konstantsed ja lõplikud jadad. Lihtsuselt järgnevad aritmeetilised jadad. Nendel jadadel on iga kahe järjestikuse liikme vahe võrdne. Järgnevas näites on see vahe –3. Seda vahet kutsumegi jada vaheks ja tähistame tihti d-ga.
Aritmeetilise jadaga teevad ihnuskoid algust algkoolis – pannes iga nädal kõrvale kogu antud taskuraha. Nii moodustavad nende iganädalased rahakogused aritmeetilise jada ja koolis õpivad nad ennustama, millal võiksid miljonäriks saada. Peab kahjuks tunnistama, et aritmeetiline jada kasvab sellise eesmärgi tarvis pisut liiga aeglaselt.
Aritmeetilise jada jaoks on eeltoodud küsimustele lihtne vastuseid leida.
Näiteks teades jada esimest liiget oskame lihtsalt kirja panna ka teise liikme: liidame esimesele liikmele vahe juurde. Nii saamegi, et näiteks jada sajanda liikme võime leida esimese liikme põhjal talle lihtsalt 99 korda vahet juurde liites ehk matemaatiliselt: a100 = a1 + 99 · d. Siin tuleb märgata, et võtsime salamahti kasutusele uue tähistuse: a100 all mõtleme jada sajandat liiget.
Üldkujus võime jada n-nda liikme an kirjutada kujul
Jada summa valemi leidmiseks tuleb märgata, et kahte jada, millest üks suureneb ja teine väheneb sama arvu võrra, on kerge kokku liita. Näiteks kui tahame leida jada summat, mille liikmed on ühest sajani, võime jada lihtsalt kokku liita tema ümberpööratud versiooniga, mille liikmed on sajast üheni.
Tulemiks on konstante jada, milles on täpselt sada liiget, iga neist väärtuseks 101. Kuna ümberpööratud jada liikmete summa on võrdne algse jada liikmete summaga, järeldub tehtud tähelepanekust ka esimese 100 arvu summa:
Leidmaks üldkujus aritmeetilise jada
esimese n liikme summavalemit, peame talle lihtsalt juurde liitma jada
Kasutades seejärel eelnevat arutelu, saame tulemuseks:
Kui soovid, et valem oleks lühem, siis ei pea viimast liiget välja kirjutama:
Nimetus
Viimaks on õigustatud ka uudishimu: kust õige pärineb nimi „aritmeetiline jada“? Täpset vastust meil lugejale pole. Üks võimalus on öelda, et aritmeetiline jada on seotud aritmeetilise keskmisega: kolmest järjestikusest aritmeetilise jada liikmest on keskmine liige äärmiste aritmeetiliseks keskmiseks [lk 198].
Teine võimalus on mõelda aritmeetikast laiemalt. Nimelt võib mõelda, et kõige lihtsamas vormis tegeleb aritmeetika naturaalarvude liitmise, korrutamise ja võimaluse korral ka lahutamise, jagamisega. Kui nüüd vaatame lõpmatult pikka aritmeetilist jada, mille esimene liige on null ning vahe d, siis saame arvud kujus 0; d; 2d; 3d; 4d; …. Lihtne on näha, et sellise aritmeetilise jada arve omavahel liites ja korrutades saame alati tulemuseks jälle sama aritmeetilise jada liikme. Seega mingis mõttes võime teha aritmeetilise jada liikmetega aritmeetikat! See pole muidugi suur ime, kui mõelda, et toodud aritmeetiline jada on peaaegu naturaalarvude koopia, ainult arvuga d läbikorrutatult.