Veel võrrandi lahendamisest

Siin alapeatükis ründame kahte küsimust: mida ikkagi peame silmas võrrandi lahendamise all ning miks seda üldse õppima peaks.

 

Võrrandi lahendamine erinevates arvuhulkades

Seni oleme rääkinud, et võrrandi lahendamine tähendab teatud tingimusi täitvate arvude leidmist. Matemaatiliselt pole see mitmel põhjusel päris täpne kirjeldus.

Näiteks oleme jätnud mainimata, milliseid arve silmas peame. Ometigi nägime arvuhulkade peatükis [lk 78], et leidub mitu erinevat arvude hulka. Seega kui räägime arvude leidmisest, kas mõtleme naturaalarve, täisarve, reaalarve, kompleks-arve?

Kui kirjeldame võrrandi abil mõnda elulist olukorda, määrab seesama olukord lahenditele antavad tingimused.

Näiteks kui meil on otsitavaks muutujaks inimeste arv, oleks tore, kui tegemist oleks naturaalarvuga. Samuti oleks meid üllatanud, kui kaaslase vanus oleks osutunud nullist väiksemaks. Samas kui otsitavaks on sõbra sõidukiirus, võiks see vabalt olla mistahes positiivne reaalarv.

Kui lahendame võrrandeid oma lõbuks, võime täiesti ise otsustada, milliste arvudega ennast piirame. Näiteks kahe muutujaga lineaarvõrrandi korral on mõistlik end piirata reaalarvudega – nii saame ilusa vastavuse sirgetega tasandil [lk 184].

Ka ruutvõrrandi korral piirame end reaalarvudega [lk 87], kui tahame joonistada ilusat graafikut, ja samas võtame arvesse ka kompleksarvud [lk 89], kui soovime lahendit leida igale võimalikule ruutvõrrandile.

Üldiselt kehtibki, et mida rohkem arve endale lubame, seda rohkem lahendeid võime ka leida. Näiteks võrrandil x2 = 2 puuduvad lahendid ratsionaalarvudes, ent ometi eksisteerivad nad juba irratsionaalarvude hulgas. Võrrandil x4 = –1 ei leidu lahendeid reaalarvude hulgas, aga neid on täpselt neli, kasutades kompleksarve.

Võrrandite lahendamine erinevates arvuhulkades on väga erineva raskusega. Näiteks ei ole mingit raskust lahendada kolme muutujaga võrrandit  X10 + Y10 = Z10 kompleksarvudes – nimelt igale X-i ja Y-i kompleksarvulisele väärtusele saame leida kompleksarvulisi Z-i väärtusi täpselt 10.

Täisarvudes suudeti seesama võrrand aga lahendada alles pärast kolmesaja-aastast pingutust – positiivsetes täisarvudes ühtegi lahendit ei leidugi! 

Teoreemi, mis väidab, et kui n on kahest suurem täisarv, siis ühelgi võrrandil kujus

positiivsetes täisarvudes lahendit ei leidu, kutsutakse Fermat’ suureks teoreemiks.

Teoreemi nimi on antud 17. sajandi prantsuse matemaatiku Pierre de Fermat’ järgi. Ta oli küll ametilt jurist, aga vabal ajal tegeles kõige meelsamini just matemaatikaga. Ta mõtles põhjalikult küsimusele, millal ikkagi ülaltoodud võrrandi lahendid leiduvad, ning ühe paberilehe äärel väitis ka, et tal on lihtne tõestus, mis näitab, et juhul kui on kahest suurem täisarv, täisarvulisi lahendeid ei leidugi. Seda tõestust aga keegi tema paberitest leidnud pole ning pole keegi suutnud lihtsat tõestust ka välja mõelda.

Tänaseks on küll Fermat’ suur teoreem tõestatud, kuid lahendus laiutab üle paarisaja lehekülje ning on matemaatiliselt ikka parajalt keeruline.

 

Miks võrrandeid lahendada?

Isegi kui arvutid ei oska elu võrranditesse panna, on nad tingimata head võrrandite lahendamisel. Neile tuleb lihtsalt võrrand ja mõned lahendusnipid ette sööta ning jääda vastuseid ootama.

Näiteks kasutades maatriksesitlust [lk 152], võib arvutitele anda täpse algoritmi, mille abil võivad nad iga lineaarvõrrandisüsteemi täpselt ja kiiresti lahendada. Sadade muutujate ja lineaarvõrranditega võrrandisüsteem võtab arvutil aega ainult hetke.

Võib tekkida küsimus: miks siis üldse ise õppida nende lahendamist?

Esiteks, kuna meid ei huvita mitte ainult võrrand ise, vaid ka tema eluline kontekst, siis võib ka võrrandi lahendamine anda ideid sellesama konteksti kohta. Nii mõnigi kord saame lahendussamme ka eluliselt tõlgendada ja sellest kasugi saada.

Teiseks annab võrrandite lahendamine oskused matemaatiliste tehetega möllamiseks, mida tuleb ette mujalgi, kus elu matemaatikasse lööme.

Viimaks, paljude kõrgema astme võrrandite lahendamise jaoks ei leidu (veel) täpseid retsepte, mida arvutile ette sööta – nende lahendamine vajab tõepoolest nupukust. Näiteks on teada, et võrrandil x2 – 2y3 = 58 leidub lahendeid, neid kõiki leida aga arvuti ei oska. Ja ka kõik praegused retseptid, mida arvutid kasutavad, tulenevad just varasemate matemaatikute mõttetööst – ka sellele tahab ehk mõni lugeja ükspäev kaasa aidata.