AM-raadio

Võnkumise levimisprotsessi ruumis kutsutakse laineks. Helilised võnkumised levivad helilainetena. Oma vestluse ja muusika kaugele sõbrale saatmine oli vanasti päris keeruline – lihtsalt suuga teele saadetud helilained eriti kaugele ei ulatu.

Kaval viis helilainete edastamiseks on teisendada nad elektromagnetlaineteks ning hoopis neid edasi saata. Aga sealgi on omad raskused. Näiteks on kohe probleemiks see, et meie hääl ja muusika on madalal sagedusel ning madalsageduslike elektromagnetlainete saatmiseks peab olema kilomeetrite pikkune antenn! Teine probleem tuleb sellest, et samal ajal tahaksime võibolla ringi saata väga erinevat sisu ja kui need oleksid kõik salvestatud sama sagedusega elektromagnetlainetesse, seguneksid sisud omavahel ja välja tuleks mingi tohuvabohu. Seega on hea raadiosüsteemi väljatöötamine parajalt keeruline.

Õnneks on alati leidunud nupukaid selle, kes keerulistele olukordadele lahenduse leiavad. Toodud muredest lahti saamiseks hakati raadiosignaale edastama niiöelda moduleerimise teel – madalsageduslik sisu salvestati väga kõrgsageduslikele lainetele. Esiteks saab selliseid laineid saata ja vastu võtta täitsa mõistliku antenniga. Teiseks tuleb välja, et nii võime paralleelselt saata ka väga palju erinevaid signaale.

Kõige lihtsam neist moduleerimise tehnoloogiatest, AM ehk amplituudi modulatsioon on lähedalt seotud tähelepanekuga, et trigonomeetriliste funktsioonide korrutise võib lahti kirjutada nende summana ning vastupidi. Amplituudi modulatsioon ei tähenda seejuures midagi muud kui seda, et ühe laine amplituudi muudetakse teise laine abil. Seeläbi salvestatakse algsesse lainesse informatsiooni.

Lihtsustatult võib mõelda, et saatjast teelepandav raadiosignaal y(t) koosneb ühest kandvast lainest kõrgel sagedusel ωk. Kui tahame talle informatsiooni külge pookida, muudame kandva laine amplituudi mingi madalama sagedusega laine abil.

Näiteks kui sagedusega ωk liigub kandev laine, mille amplituudi muudetakse koosinuselainega sagedusel ωm, siis võiks kogu signaal olla kujus:

Kuna trigonomeetriliste funktsioonide korrutise võime lahti kirjutada ka nende summana [lk 250], võime signaali samas näha ka kui eraldiseisvate lainete kooslust:

Teisisõnu, meie signaal koosneb kolme laine summast: kandvast lainest ja kahest lisalainest. Nende lainete taga peidus olevate võnkumiste sagedusesitus ehk spekter oleks siis järgmine:

Need lisalained või lisavõnkumised saab nüüd vastuvõtjas Fourier’ teisenduse [lk 257] abil eraldada, just nii nagu sahina eraldamiselgi. Seeläbi õnnestub meil kandvale lainele lisatud signaal vastuvõtjas välja lugeda!

Veelgi enam, kui meie kandev laine on näiteks sagedusel 1000 kHz ja sisuks on signaal alla 5 kHz, siis mahub ju kogu signaal ehk kõik kasutatavad lainekomponendid 995 kHz ja 1005 kHz vahele. Seega juba sagedusega 1020 kHz kandelainel võiksime julgelt paralleelselt teise sisuga signaali edastada – kasutatavad lained ei kattuks ja neid saaks ilusasti vastuvõtjas eraldatult välja lugeda.

Muidugi on kandelainele lisatav sisu enamasti palju keerulisem kui üks pisike laine ning lisaks muutub ta veel ajas, ent põhimõte jääb samaks: saatjas lisatakse informatsioon kandjalaine amplituudi muutmise teel ning vastuvõtjas saadakse see signaali komponentideks jagamise abil taas kätte.

Siinkohal sai küll kirjeldus kiire ning ebatäpne, aga huvi korral uurige, see on päris põnev! Tõtt-öelda on muidugi AM-raadio juba üsna iganenud tehnoloogia. Tänaseks on pigem kasutusel niinimetatud FM-raadio, kus muudetakse hoopis kandva laine sagedust, mitte amplituudi. Ja juba varsti minnakse ilmselt kõikjal üle digitaalsete signaalide edastamisele. See jääb aga kahjuks siit raamatust väljapoole.