Funktsiooni ƒ(x) piirväärtust kohal x0 tähistatakse väga sarnaselt jadadega:
Piirväärtuse tõlgenduski on analoogne. Toodud kirjeldus tähendab, et kui funktsiooni argumendi x väärtus läheneb väärtusele x0, siis funktsiooni ƒ(x) väärtus läheneb järjest väärtusele a. Vahel öeldakse ka, et funktsioon ƒ(x) koondub kohal x0 väärtusesse a või et funktsiooni ƒ(x) piirväärtus kohal x0 on a.
Mõnikord on funktsioni piirväärtuse leidmine päris lihtne. Näiteks ruutfunktsiooni y = x2 korral on igas punktis piirväärtus võrdne funktsiooni enda väärtusega. Näiteks kohal –2 on tema piirväärtus seega 4. See tuleneb lihtsalt sellest, et ruutfunkt- sioon on kena pidev funktsioon – tema graafikut võib joonistada pastakat paberilt tõstmata.
Ent funktsiooni
piirväärtus kohal 0 puudub, sest nulli lähedal võtab funktsioon nii väga suuri positiivseid kui negatiivseid väärtusi ning jällegi ei suuda me otsustada, mida täpselt siis ikkagi piirväärtuseks valima peaks.
Samas funktsiooni
piirväärtus kohal 0 on lõpmatus.
Siin oleme otsustusvaevast pääsenud, mõlemal pool nulli muutub funktsiooni väärtus aina suuremaks. Matemaatika keeles võiks kirjutada:
Muidugi võib ka funktsioonide piirväärtuse olemasolu üle mõtiskleda veel pikemaltki.
Millal leidub funktsioonil piirväärtus?
Nagu nägime, pole seekordki sugugi selge, millistel funktsioonidel ja millistel kohtadel leidub piirväärtus. Tuleb välja, et ranged tingimused piirväärtuse leidumiseks on umbes sarnased kui jadade korral. Erinevus on vaid selles, et seekord ei vaata me järjest suuremaid jada liikmeid, vaid järjest sarnasemaid funktsiooni argumente.
Sellest on kõige lihtsam ilmselt mõelda jällegi geomeetriliselt.
Oletame, et tahame teada, kas funktsiooni ƒ(x) piirväärtus kohal x0 on a. Tõmbame nagu jadadegi puhul väärtuse a ümber alt ja ülevalt tõkestavate sirgjoonte paari. Kui nüüd olenemata valitud sirgjoontest võime alati leida argumendi x0 ümber vahemiku, mille jaoks ƒ(x) graafik jääb nende sirgjoonte vahele, siis ongi ƒ(x) piirväärtus kohal x0 võrdne a-ga.
Näiteks eelmise funktsiooni
piirväärtus kohal lõpmatus on null ehk
sest me saame nulli ümber tõmmata kaks horisontaalset sirget ning võime kindlad olla, et piisavalt suure sisendi korral jääb funktsiooni väärtus kindlasti nende joonte vahele.
Muuseas, on võibolla natuke üllatav, aga see tingimus jätab vabaks ka järgmise võimaluse: funktsioonil leidub küll mingil kohal kindel väärtus, aga piirväärtust seal pole. Näiteks võib vaadata funktsiooni, mis võtab väärtuseks miinus ühe, kui sisendarv on negatiivne; pluss ühe, kui sisendarv on positiivne, ning nulli, kui sisendarv on null. Mis peaks olema selle funktsiooni piirväärtus kohal null?
Piirväärtuse tähtsus matemaatikas
Funktsiooni piirväärtus võib esmapilgul tunduda ehk tühi-tähi, justkui ainult mingi augutäide. Üllatavalt on tema roll funktsioonide uurimisel väga märkimisväärne. Miks?
Esiteks aitab piirväärtus rangelt kirja panna matemaatilisi mõisteid, mis räägivad „lõpmatult väikesest“. Näiteks on piirväärtuste abil defineeritud tuletis – funktsiooni muutumise hetkekiirus. Võime mõelda, et tegemist on keskmise kiirusega lõpmatult väikese ajavahemiku jooksul.
Samamoodi on piirväärtuste abil defineeritud integraal [lk 340], millest võime mõelda kui kõverkujundi pindalast ja mille võime arvutada lõpmatult väikeste ristkülikute pindalade kokkuliitmisel.
Põnevust lisab ka see, et saame piirväärtuse abil defineerida ka näiteks arvud e ja π ning veel teisigi põnevaid arve [lk 96]. Muuseas, π defineerimisel on seejuures piirprotsess oma olemuselt geomeetriline: vaatame, kuidas korrapärased hulknurgad järjest enam ringjoonega sarnanema hakkavad. Tegelikult osutuvadki oluliseks mitte ainult arvulised, vaid ka geomeetrilised piirprotsessid.
Õigupoolest võib ka reaalarvude hulga kokku panna ratsionaalarvudest ja hästi valitud piirväärtustest: näiteks arvu π koondub jada 3; 3,1; 3,14; 3,141; 3,1415 …, kus võtame lihtsalt appi järjest rohkem π komakohti.
Piirväärtusi kasutades saame lisaks irratsionaalarvude leidmisele nendega ka tehteid tegema hakata. Nimelt selgub, et kui piirväärtused eksisteerivad ja on lõpliku suurusega, saab neid väga kenasti liita ja korrutada.
Näiteks kui soovime leida funktsioonide x2 ja x summa x2 piirväärtust kohal 2, siis võime
- esmalt leida piirväärtuse funktsioonile x2 kohal 2 – vastuseks 4,
- seejärel piirväärtuse funktsioonile x kohal 2 – vastuseks 2,
- viimaks saadud piirväärtused kokku liita – lõppvastuseks 6.
Matemaatiliselt kirjutaksime:
Selle reegli kasutamisel peab siiski ettevaatlik olema: tuleb alati kontrollida, et mõlema liidetava piirväärtused üksipäini eksisteerivad. Samasugune reegel kehtib ka korrutamise jaoks, kusjuures peab olema samavõrra ettevaatlik.
Piirväärtuse kõige suurem sõber on aga pidevuse mõiste.