Tõenäosusteooria algusloo kohta on liikvel huvitav legend. Selle legendi kohaselt ei ole tõenäosusteooria aluskiviks sugugi intellektuaalne huvi, vaid hoopis kirglik hasartmäng. Nimelt hakkas paadunud ja tunnustatud hasartmängur ning amatöörmatemaatik Chevalier de Méré (1607–1684) enda loodud reeglitega järsku täringumängus pidevalt kaotama.
Probleemile lahenduse leidmiseks otsustas ta kirjutada ühele oma heale sõbrale, kuulsale prantsuse matemaatikule ja filosoofile Blaise Pascalile (1623–1662). See 17. sajandil kirjutatud murekiri panigi praeguse arusaama kohaselt aluse tõenäosusteooria arengule.
Oma kirjas kurtis Chevalier de Méré Blaise Pascalile, et täringutepaar, mis oli talle sisse toonud hulgaliselt raha, on nüüd järsku hakanud alt vedama.
Algupäraselt oli kihlvedu järgmine: Chevalier de Méré väitis, et ta suudab nelja viskega raudselt vähemalt korra kuue visata. Kirja autorile tundus loogiline, et sellise kihlveoga peaks rohkem võitma kui kaotama, ning aja jooksul saadud võidud aina süvendasid seda uskumust. Kui alguses leidus tublisti huvitunud mängijaid, kes olid oma kuueviskamisandes kindlad, ei jätkunud kihlvedusid siiski kuigi kauaks – Chevalier de Méré pidevad võidud kahandasid kiiresti nende inimeste arvu, kes mänguga soostusid.
Nii otsustas Chevalier de Méré mängureegleid muuta. Nüüd väitis ta, et suudab täringupaari viskega saada vähemalt korra topeltkuued. Ta oli veendunud, et siingi peaks kihlvedu tema kasuks olema. Ometigi hakkas aga vaene Chevalier de Méré aina kaotama...
Kuna temagi argumendid olid ta enda meelest üsna matemaatilised, läks ta oma tusatujus nii kaugele, et kuulutas matemaatika ja päriselu vahelise suhte olematuks. Nagu kohe näeme, matemaatika temaga siiski päris nõus ei ole.
Mida arvab Chevalier de Mere kihlvedudest matemaatika
Chevalier de Méré väitis, et ta suudab:
- visata nelja täringuga vähemalt ühe kuue,
- visata kahekümne nelja täringupaariga vähemalt korra topeltkuued.
Esimese kihlveoga oli ta rikkaks saamas, ent teisega mängis oma varanduse kärmelt maha. Chevalier de Méré oleks nende kihlvedudega raha kokku ajanud parajasti siis, kui ta oleks rohkem kui pooltel kordadel suutnud oma lubatut täita.
Kuidas oleks ta võinud ette juba aimata, kui tihti ta võidab või kaotab?
Üks võimalus oleks olnud leida täringuviskele tõenäosuslik kirjeldus. Nimelt, üks tõenäosuse tõlgendus on ju just nimelt sageduslik – tõenäosus näitab, kui tihti üks või teine sündmus meie kirjelduse kohaselt pikas perspektiivis juhtub. Rohkem kui pooltel kordadel tähendab seega, et selle sündmuse tõenäosus on suurem kui pool.
Näeme, et armas hasartmängur pidanuks rikkaks saama parajasti siis, kui tal oleks olnud täringuviskest täpne kirjeldus ning mõlema tema lubaduse tõenäosus selles kirjelduses oleks olnud poolest suurem.
Täringuviske tõenäosuslik kirjeldamine on üsna lihtne. Nii kaua kui mäng on aus (ja vaevalt et petturiga keegi täringuid viskaks!) on mõistlik eeldada, mõelda või postuleerida, et kõik täringu küljed on võrdväärsed – on võrdne võimalus, et viskel tuleb ükskõik milline külgedest. Seega on kõikide nende tõenäosus täpselt 1⁄6.
Esimese kihlveo korral on soodsaks sündmuseks see, et visatakse nelja viske jooksul vähemalt korra üks kuus. Selgub, et lihtsam on aga arvutada selle sündmuse vastandsündmuse tõenäosust – ehk siis sündmuse, et igal viskel visatakse üks kuni viis silma, tõenäosust. Nimelt piisab sel juhul iga viske eraldi uurimisest ja nende sidumisest sõltumatute sündmuste reegli abil.
Tõenäosus, et ühel viskel viskame üks kuni viis silma, on 5⁄6. Kõik visked on aga omavahel sõltumatud ning võime nende tõenäosused kokku korrutada, leidmaks tõenäosus, et me ei viska ühtegi kuut. See on parasjagu
Kuna vastandsündmuste tõenäosuste summa on üks, siis järeldame, et vähemalt ühe kuue viskamise tõenäosus on umbes 0,518 ehk rohkem kui pool. Siit tulevad võidud!
Ka teise kihlveo korral on lihtsam välja arvutada vastandsündmuse tõenäosust – tõenäosust, et igal täringupaari viskel ei saada topeltkuut. Iga sellise viske tõenäosus on täpselt 35⁄36, kuna kokku on 36 võimalikku paari. Seega leiame, kasutades jällegi sõltumatute sündmuste reeglit, et mitte ühegi kuute paari viskamise tõenäosus on
See on aga rohkem kui pool! Seega on ühe 12 silmaga täringupaari viskamise tõenäosus omakorda vähem kui pool ning selge see, et härra de Méré oma rahast ilma jäi.
Matemaatika igal juhul süüdi pole!
Mille vastu Chevlier de Méré siis eksis? Selle asemel, et hoolsalt arvutada (peab tunnistama, et tol ajal ei olnud muidugi arvude 24. astme leidmine nii väga lihtne), uskus ta oma intuitsioonil põhinevat mõtteviisi. Ta arutles, et kahe kuue viskamine kahel viskel on 6 korda vähem tõenäoline kui ühe kuue viskamine ühel viskel ja et seega tuleb 6 korda rohkem viskeid teha, et seda kompenseerida. Kõlab isegi päris usutavalt?