Gravity

Ilma kehadevahelise vastastikmõjuta liiguks kõik kehad ühtlaselt ja sirgjooneliselt või seisaks paigal. Miks siis kukub üles visatud pall tagasi maapinnale, ehkki ei ole mingit nähtavat takistust, miks see ei võiks jäädagi ülespoole liikuma? Miks Kuu tiirleb ümber Maa, kui hõlpsam oleks liikuda otse nagu nööri otsa seotud kivi, mida on keerutatud ja siis lahti lastud?

Looduses esineb kehadevaheline vastastikmõju, mida nimetatakse gravitatsiooniks ehk gravitatsiooniliseks vastastikmõjuks. Gravitatsioonilises vastastikmõjus olevate kehade vahel mõjub tõmbejõud, mida nimetatakse gravitatsioonijõuks.

Gravitatsioonijõud mõjub kõikidele vastastikmõjus olevatele kehadele ühtemoodi ja see on suunatud kehade keskpunktide poole.

Miks siis üles visatud pall tagasi maapinnale kukub?

Maa ja õun mõjutavad teineteist sama suurte, aga vastassuunaliste jõududega.

Maa ja palli vahel mõjub gravitatsioonijõud. Kui pall kaalub 100 grammi, siis on gravitatsioonijõu suuruseks ligikaudu 1 N. Selline jõud mõjub nii pallile kui ka Maale, nii et rangelt võttes peaksid pall ja Maa hakkama teineteisele vastu liikuma. Kuna aga Maa mass on palli massist väga palju suurem, nihkub ta sellises vastastikmõjus väga vähe. See-eest palli mõjutab gravitatsioonijõud märgatavalt – see „kukub alla“.

Gravitatsioon esineb kõigi kehade vahel, isegi kahe pinginaabri vahel ning pinalis olevate pliiatsite vahel. Kui me seda ei tunne, siis sellepärast, et näiteks kahe pinginaabri vaheline gravitatsioonijõud on kõigest 0,0000001 N. Millest sõltub gravitatsioonijõu suurus?

Gravitatsioonijõu suurus sõltub kehade massist – mida suurem on kehade mass, seda suurem on gravitatsioonijõud.

Kui üks pinginaabritest kaaluks miljon tonni, siis oleks täpsete mõõteriistadega võimalik pinginaabrite vahel tekkiv gravitatsioonijõud ka ära mõõta. Lisaks kehade massile sõltub gravitatsioonijõu suurus ka kehade omavahelisest kaugusest. Mida kaugemal on kehad üksteisest, seda väiksem on gravitatsioonijõud. Näiteks kui inimesele mõjub maapinnal gravitatsioonijõud 800 N, siis 10 000 km kaugusel maapinnast on gravitatsioonijõud kõigest 120 N (vt tabel).

Maa või mõne teise taevakeha lähedal asuvatele kehadele mõjuvat gravitatsioonijõudu nimetatakse ka raskusjõuks. Maapinna lähedal olevatele kehadele mõjuvat raskusjõudu saab arvutada valemiga:

Selles valemis tegur g näitab, millise jõuga mõjutab Maa (või mõni muu taevakeha) tema pinnal asetsevat 1 kg keha. Tegurit g nimetatakse raskuskiirenduseks, selle ligikaudne väärtus maapinnal on g = 9,8 N/kg.Raskusjõu valem Fr = mg on igapäevaelus väga oluline, kuna annab mõtte sõnadele kaal ja kaalumine. Kaal mõõdab temale asetatud keha poolt talle avaldatavat raskusjõudu. Keha mass m on selle raskusjõuga võrdeline ja selle saab arvutada valemist m = Fr/g, kui me teame raskusjõudu Fr ja raskuskiirendust g.

Keha mass on konstantne suurus, aga keha kaal võib väga suurtes piirides muutuda, sest raskuskiirenduse g väärtus ei ole alati ja igal pool ühesugune.

Näiteks on raskuskiirenduse väärtus ekvaatoril natuke väiksem kui poolustel ning ühte ja sama keha ekvaatoril ja poolusel kaaludes saame erineva tulemuse. See erinevus on suhteliselt väike, aga kaubanduses peab sellega arvestama – banaanilasti kaal põhja poole sõites pisut kasvab.

Kuna gravitatsioonijõud sõltub kehadevahelisest kaugusest, siis sõltub raskuskiirenduse g väärtus ka kaugusest maapinnast.

Erinevate planeetide ja Kuu raskuskiirenduste võrdlus

Kuna raskuskiirenduse väärtus sõltub taevakehade massist, siis on erinevate planeetide läheduses raskuskiirenduse väärtus erinev ja järelikult on seal teistsugune ka kehade kaal. Näiteks Kuu pinnal on g väärtuseks 1,6 N/kg, mistõttu on Kuul mõjuv gravitatsioonijõud ja kehade kaal umbes kuus korda väiksem kui Maal. Tõstes Maal keha, mille mass on 50 kg, mõjub talle gravitatsioonijõud 500 N. Kuul tuleb aga rakendada sama palju jõudu, et tõsta keha, mille mass on suurem kui 300 kg.