Irratsionaalarvuliste astendajate jaoks ei ole senisest intuitsioonist suurt kasu – näiteks on päris raske vastata küsimusele, mitu korda ma pean korrutama arvu 2, et saada arv 2π või arv ee.
Siiski on neistki võimalik rangelt ja täpselt mõtelda, tuleb lihtsalt muuta oma vaatenurka. Sellest võib täpsemalt juba lugeda eksponentsiaalfunktsiooni peatükist [lk 280]. Teatud mõttes on tegemist täpselt samasuguse aukude täitmisega nagu ratsionaalarvudelt reaalarvudele üle minnes – seekord ei ole augud ainult arvteljel, vaid on eksponentsiaalfunktsiooni graafikul. Oluline on märgata, et seda saab teha ainult positiivsete aluste korral – negatiivsete aluste korral jäime juba ratsionaalarvuliste astmetega hätta, rääkimata siis irratsionaalarvulistest astmetest.
Praktikas võime irratsionaalarvuliste astmetega käituda samamoodi nagu astme null korral – otsime lihtsalt mõne ratsionaalarvulise astendaja, mis on meie irratsionaalarvule piisavalt lähedal. Täpselt nii käituvad ka arvutid – irratsionaalarve nad nagunii salvestada ei oska.
Efektiivne astendamine
Naturaalarvuliste astmete võtmine on üpriski igapäevane tegevus (kui mitte isiklikult Sulle, siis kindlasti mõningatele teadlastele ja ka arvutitele).
Näiteks 33 arvutamiseks on vaja 2 korrutamistehet 3 · 3 = 9 ning 9 · 3 = 27.
Mitme tehtega saaks aga arvutada 3100? Kas tõesti läheb selleks 99 tehet või on võimalik leida mõni kiirem viis?
Selgub, et on olemas ka kiirem viis. Selle kiirema viisi tabamiseks tuleb märgata, et järjest arve ruutu tõstes jõuame päris kiiresti kõrgete astmeteni:
Nüüd on idee kirjutada 100 selliste astmete summadena, mida võime ruutuvõtmise abil leida: 100 = 64 + 32 + 4 ja seega saamegi välja arvutada 3100:
Kokku lugedes näeme, et vajasime ainult 8 korrutustehet 99 asemel.
Hoolas lugeja märkab, et astendajad, mille astmeid oskame kiiresti välja arvutada, on kõik kujus 2m. Teisisõnu peame kiire astendamise jaoks kirjutama lihtsalt astendaja tema kahendesituses: näiteks 100 = 26 + 25 + 22. Kahendesitusest rääkisime pisut pikemalt arvuhulkade juures [lk 80].