$${(\text{rot} {\bf E})_x = \frac{\partial E_z }{\partial y} - \frac{\partial E_y}{ \partial z} = - \mu \mu_0 \frac{\partial H_x}{\partial t} \\ (\text{rot} {\bf E})_y = \frac{\partial E_x }{\partial z} - \frac{\partial E_z}{ \partial x} = - \mu \mu_0 \frac{\partial H_y}{\partial t} \\(\text{rot} {\bf E})_z = \frac{\partial E_y }{\partial x} - \frac{\partial E_x}{ \partial y} = - \mu \mu_0 \frac{\partial H_z}{\partial t}}$$