$${\begin{cases}
\frac{R}{f_1} = \frac{|AF'|}{f_2} \implies |AF'| = \frac{R\cdot f_2}{f_1}\\
\frac{R}{f_1} = \frac{|BO'|}{\frac{f_1}{2}} \implies |BO'| = \frac{R}{2}\\
\frac{|AF'|}{|O'D| - f_2} = \frac{r}{\frac{f_1}{2} + |O'D|} \\
\frac{|AF'|}{|O'D| - f_2} = \frac{|BO'|}{|O'D|} \\
\end{cases}}$$