Interaction of bodies

Põrandale asetatud pall seisab paigal, kui miski teda ei mõjuta. Pall hakkab liikuma alles siis, kui me seda tõukame, nagu seda juba oleme näinud kehade inertsuse omadusega tutvudes. Teame ka, et liikuma lükatud pall ei veere kuigi kaua, vaid jääb mõne aja pärast seisma. Kuidas neid nähtusi seletada?

Sellele küsimusele vastamiseks peame uurima kehade vastastikmõju seaduspärasusi. Varasemast teame, et

  1. keha püsib paigal või liigub ühtlaselt ja sirgjooneliselt, kui seda ei mõjuta teised kehad;
  2. keha kiirus võib muutuda ainult siis, kui seda mõjutavad teised kehad.

Veeretame nüüd paigalseisva palli pihta teise täpselt samasuguse palli. Paigalseisev pall hakkab siis liikuma ning see pall, mida tema pihta veeretati, jääb praktiliselt seisma (või hakkab aeglasemalt liikuma) – pallid mõjutavad teineteist ning mõlema palli kiirus muutub.

Kui korrata eelnevat katset nii, et paigalseisev pall on suure massiga ning tema vastu veeretatakse palju väiksema massiga pall, siis hakkab suurem pall hästi aeglaselt liikuma, kuid väike pall põrkab tagasi ja liigub praktiliselt sama kiirusega, mis tal enne põrget oli. Katsest võib järeldada, et kehade vastastikmõju tõttu muutub suurema massiga keha kiirus palju vähem ning väiksema massiga keha kiirus rohkem.

Kehadevahelise vastastikmõju kohta tasub meelde jätta järgmist.

  1. Kehade mõju on alati vastastikune – üks keha mõjutab teist ning teine esimest.
  2. Kehade vastastikmõju korral muutub suure massiga keha kiirus vähem kui väiksema massiga keha kiirus.

Siit järeldub ka, et kui põrand pidurdab palli hoogu, siis pall omakorda kiirendab põrandat. Aga kuna põranda ja selle külge kinnitatud maja mass on palli massist palju suurem, siis me märkame vaid palli kiiruse muutumist.

Füüsikalist suurust, mis iseloomustab ühe keha mõju teisele kehale, nimetatakse jõuks.

Jõudu tähistatakse tähega F ning jõu ühikuks on njuuton (lühend N). Jõu ühik on saanud oma nime Inglise teadlase Isaac Newtoni järgi, kes tegeles paljude loodusteadusi puudutavate teemadega ning sõnastas mehaanika põhiseadused, mis on tänapäeva füüsika nurgakiviks. Täpsemalt õpite Newtoni seadusi gümnaasiumis.

Jõud mõjub alati ühes kindlas suunas. Joonistel näidatakse jõu mõjumise suunda noolega. Noole algus tehakse alati sinna punkti, kuhu jõud mõjub. Jõu mõjumise punkti nimetatakse jõu rakenduspunktiks.

Enamasti mõjub kehale samal ajal mitu jõudu. Näiteks kelgu vedamisel mõjub kelgule veojõud, mis on kelgu tõmbamise suunaline. Samal ajal mõjub talle tee ja kelgu põhja vaheline hõõrdejõud, mis on sõidusuunale vastupidine.

Kass veab kelku

Kui me tahame vaadelda seda, kuidas kehale mõjuvad jõud mõjutavad keha liikumist, on meil vaja leida kehale mõjuv summaarne jõud ehk resultantjõud. Kõrvalolevas näites saame leida resultantjõu, kui me lahutame veojõust hõõrdejõu. Me peame jõudusid lahutama, kuna need jõud on vastassuunalised:

Kelgu liikumissuunalise resultantjõu leidmisel pole vaja arvestada raskusjõu ning maapinna elastsusjõuga, kuna need jõud on veo- ja takistusjõuga risti.

Uurime joonisel kujutatud autole mõjuvaid jõudusid. Kui veojõud on takistusjõust suurem, liigub auto kiirenevalt. Kui aga takistusjõud on suurem veojõust, liigub auto aeglustavalt.

Millal liigub joonisel kujutatud auto ühtlaselt? Me juba teame, et kui kehale ei mõju ühtegi jõudu, siis on keha paigal või liigub ühtlaselt ja sirgjooneliselt. Selgub, et sama kehtib ka siis, kui kehale mõjuvate jõudude summa on 0 (resultantjõud on 0 N).

Keha on paigal või liigub ühtlaselt ja sirgjooneliselt, kui sellele mõjuvad jõud tasakaalustavad üksteist.

Seega liigub joonisel kujutatud auto ühtlaselt siis, kui veojõud ja takistusjõud on võrdsed.