Kalev Tarkpea, Henn Voolaid Elektromagnetism
 
© Tarkpea, Voolaid, EFS

Elektromagnetism

  1. 1 Elektriväli ja magnetväli
    1. Sissejuhatus
    2. 1.1 Elektromagnetismi uurimisaineLisamaterjalid
    3. 1.2 ElektrilaengLisamaterjalidLisaülesanded
    4. 1.3 Coulomb'i seadusKontrollküsimusedLisamaterjalid
    5. 1.4 Ampère seadusKontrollküsimusedLisamaterjalid
    6. 1.5 Elektrivälja tugevus ja magnetinduktsioonKontrollküsimusedLisamaterjalid
    7. 1.6 Väljade visualiseerimineKontrollküsimusedLisamaterjalid
    8. 1.7 Elektrivälja potentsiaal ja pingeKontrollküsimusedLisamaterjalid
    9. 1.8 Elektriväli ja magnetväli - lõpetuseks
  2. 2 Elektromagnetväli
    1. Sissejuhatus
    2. 2.1 Ühele osakesele mõjuv magnetjõudKontrollküsimusedLisamaterjalid
    3. 2.2 Pööriselektriväli ja induktsiooni elektromotoorjõudKontrollküsimusedLisamaterjalid
    4. 2.3 Faraday katsedKontrollküsimusedLisamaterjalid
    5. 2.4 Faraday induktsiooniseadusKontrollküsimusedLisamaterjalid
    6. 2.5 Lenzi reegel. Induktsiooniseaduse rakendusedKontrollküsimusedLisamaterjalid
    7. 2.6 Induktiivsus ja mahtuvusKontrollküsimusedLisamaterjalid
    8. 2.7 Elektromagnetvälja energiaKontrollküsimusedLisamaterjalid
    9. 2.8 Elektromagnetiline levitatsioonLisamaterjalid
    10. 2.9 Lõpetuseks - elektromagnetväli
  3. 3 Elektromagnetlained
    1. Sissejuhatus
    2. 3.1 Elektromagnetvälja levik elektromagnetlainetenaKontrollküsimusedLisamaterjalid
    3. 3.2 Valguse kirjeldamineKontrollküsimusedLisamaterjalid
    4. 3.3 Elektromagnetlainete omadusedKontrollküsimusedLisamaterjalid
    5. 3.4 Polariseeritud valgusKontrollküsimusedLisamaterjalid
    6. 3.5 Lõpetuseks - elektromagnetlained
  4. 4 Valguse ja aine vastastikmõju
    1. Sissejuhatus
    2. 4.1 Geomeetriline optikaKontrollküsimusedLisamaterjalid
    3. 4.2 Valguse dispersioon ja selle kasutamineKontrollküsimusedLisamaterjalid
    4. 4.3 Valguse teke ja liigidKontrollküsimusedLisamaterjalid
    5. 4.4 Kuidas saada nähtamatuks?Lisamaterjalid
    6. 4.5 Lõpetuseks - valguse ja aine vastastikmõju
Elektriväli ja magnetväli
Kass kardab välku

Miks on otsene välgutabamus harilikult surmav? Kas äikese ajal tuleks puu alla varju ronida või lagedal väljal seista? Kas mõistlikum on rahulikult seista, kükitada või joosta? Miks inimestel juuksed püsti tõusevad, kas see on ohu märk? Miks on äikesetormi ajal lehmad, hobused ja lambad tavaliselt suuremas ohus kui inimesed?

On palju lugusid sellest, kuidas kuulus USA teadlane ja riigimees Benjamin Franklin lennutas läheneva äikesetormi ajal tuulelohet, et näidata selle loodusnähtuse elektrilisi omadusi. Miks välk teda ei tapnud?

Kas äikesepilve saaks põhimõtteliselt ka kompassiga leida?

Elektromagnetismi uurimisaine
Sissejuhatus elektromagnetnähtuste füüsikasse
Kreeka teadlane Thales tegi merevaigu ja udusulgedega katseid umbes 600 e.m.a.

Tänapäeval ümbritsevad meid kõikjal esemed ja nähtused, mille iseloomustamisel kasutame sõna elekter. See sõna on jõudnud meieni kreeka keelest. Nii nimetasid vanad kreeklased kuldse läikega metallisulamit ja ka sellega väliselt sarnast ainet – merevaiku (kr - elektron). Nad märkasid, et villase riidega hõõrutud merevaigutükk suudab kergeid ainekübemeid enda külge tõmmata. Ajapikku hakati kõiki selliseid loodusnähtusi nimetama merevaigu-sarnasteks ehk elektrilisteks.

Kreeka päritoluga on ka sõna magnet. Magnesia kivina (kr - Magnetis lithos) tunti vanas Kreekas kivimit, mis oli suuteline raudesemeid enda külge tõmbama. Elektrilise ja magnetilise tõmbejõu sarnasusest lähtuvalt oli vana- ja keskajal kombeks arvata, et need jõud põhimõtteliselt ei erinegi. Alles uusaegsetes esimestes teaduslikes käsitlustes hakati elektri- ja magnetnähtusi selgelt omavahel eristama. 19. sajandi keskel avastati, et elektrilistel ja magnetilistel jõududel on siiski ühine allikas. Elektri- ja magnetnähtused on looduses toimiva üldise elektromagnetilise vastastikmõju avaldumisvormid. Jõud, millega me oma igapäevases elutegevuses vältimatult kokku puutume, on valdavalt elektromagnetilise päritoluga. Nendeks on näiteks elastsusjõud, hõõrdejõud ja ka elusorganismide lihasjõud. Elektrijõud hoiavad koos lihtaine aatomeid. Vedeliku või gaasi molekulideks, tahkisteks ja keerulisteks orgaanilisteks ühenditeks liidab aatomeid keemiline side, mis on samuti tingitud elektromagnetilisest vastastikmõjust.

Elektromagnetjõudude kaks tähtsaimat tehnilist rakendust on elektroenergeetika ning elektriline side- ja infotehnika. Elektroenergeetika hõlmab kogu inimtegevust elektrienergia tootmisel, ülekandel ja kasutamisel. Elektrijaamades muudetakse elektrienergiaks mingi osa kütuse põlemisel vabanevast soojusest, voolava vee kineetilisest energiast või koguni aatomituumade seoseenergiast. Neid jaamu nimetatakse seetõttu vastavalt soojus-, hüdro- ja tuumaelektrijaamadeks. Päikesepatarei muundab elektrienergiaks valguskiirguse energiat. Taskulambipatareis, autoakus ja teistes keemilistes vooluallikates saadakse elektrienergiat keemilisel reaktsioonil vabaneva energia arvelt.

Maailm elektrivalguses.

Tarvitis leiab aset vastupidine protsess. Elektrienergia muundub mehaaniliseks energiaks (elektrimootoris), valguskiirguse energiaks (elektrilambis), soojuseks (kütteseadmes) või mingiks muuks energia liigiks. Elektrienergia on mugav vahelüli loodusest ammutatava ja inimtegevuses kasutatava energia vahel. Seda soodustab asjaolu, et elektrienergiat saab üle kanda juhtmete abil. Pole vaja mingeid rihmu, võlle ega hammasrattaid.

Elektrienergia suurima puudusena võiks nimetada raskusi suurte energiakoguste salvestamisel. Elektrilise energia tootmine ja tarbimine peavad toimuma samaaegselt.

Elektroenergeetikast veelgi kiiremini areneb tänapäeval elektromagnetiline infotehnika. See hõlmab andmete, kõne, muusika või muu sellise esitamist ja ülekandmist elektromagnetilise signaalina. Samas on ka tegemist info elektrilise, magnetilise või optilise salvestamise ning töötlemisega. Elektriliste infotöötlus- ja sidesüsteemide kiiretoimelisuse aluseks on elektromagnetilise vastastikmõju suur levimiskiirus – kuni 3·108 m/s.

Käesolev õpik käsitleb elektromagnetilise vastastikmõju seaduspärasusi, mille tundmine aitab meil mõista väga paljude loodusnähtuste tekkimist. Nendel seaduspärasustel põhineb ka elektriliste ja optiliste seadmete töö, mida me oma igapäevases elus pidevalt kasutame. Seega on vastavad teadmised nii tunnetusliku kui ka rakendusliku väärtusega.

Elektromagnetismi uurimise ajaloost

Elektromagnetismi teadusliku uurimise algatajaks peetakse Inglise arsti ja füüsikut William Gilbertit. Aastal 1600 ilmus trükist tema töö De magnete..., mille täieliku pealkirja võib eesti keelde tõlkida kujul: Magnetist, magnetilistest kehadest ja suurest magnetist – Maast. Gilbertist oli juttu juba põhikooli Elektriõpetuses. Seal mainiti ka Benjamin Franklinit, kes lõi esimese tervikliku elektrinähtuste teooria, esimest bioelektromagnetismi uurijat Luigi Galvanit ning esimese vooluallika loojat Alessandro Voltat. Põgusalt oli juttu Ohmi seaduse avastajast Georg Simon Ohmist ning voolu magnetvälja esmauurijast Hans Christian Örstedist.

Charles-Augustin de Coulomb (1736 - 1806).

Käesolevas kursuses on aga aukohal elektrostaatika põhiseaduse formuleerija Charles Coulomb, magnetostaatika põhiseaduse formuleerija André Marie Ampère, elektromagnetilise induktsiooni avastaja Michael Faraday ning kõiki elektromagnetnähtusi kirjeldava ühtse teooria looja James Clerk Maxwell. Eestimaalt pärit mehena pälvib meie erilist tähelepanu ka Emil Lenz, induktsioonivoolu suunda määrava reegli formuleerija.

Valgusnähtuste teaduslik käsitlus sai alguse 17. sajandil, kui I. Newton püstitas hüpoteesi valgusest kui silmale nähtamatute osakeste voost, mis levivad ühtlases keskkonnas sirgjooneliselt. Neid osakesi nimetas ta korpuskuliteks, mida võib pidada nüüdisaegsete kvantide eelkäijateks.

Mõned aastad pärast Newtonit püstitas C. Huygens teise hüpoteesi, mille kohaselt valgus levib lainetena. Ta arvas, et valguslaine levimiseks on vajalik mingi eriline keskkond, mis täidab kogu universumi. Seda ainet nimetati eetriks. Tänapäeval on teada, et mingit erilist, valguse levimiseks vajalikku keskkonda ei eksisteeri ja valgus levib ka tühjuses.

Aastal 1802 tegi T. Young katseid, mis näitasid, et kitsast avast läbi minnes kaldub valgus oma esialgsest levimissuunast kõrvale, valguse teel oleva tõkke taha. Kuna veelained levivad ka tõkete, näiteks kivide taha, siis Youngi katse tõestas, et valgusel on laineline olemus.

James Clerk Maxwell (1831-1879)

Järgmise olulise sammu valguse laineteoorias tegi J. C. Maxwell, kes 1865.a. tõestas teoreetiliselt, et on olemas elektromagnetlained, mis levivad ka tühjuses ja seda kiirusega 3·108 m/s. See tulemus langes küllalt hästi kokku tolleks ajaks määratud valguse kiirusega. Sellest järeldas Maxwell, et valgus on elektromagnetlaine.

Nüüdisaegsele valguse kvantteooriale pani aluse 1900.a. M. Planck, kes võttis kasutusele valgusosakesed ehk kvandid. Muidu ei suutnud ta teoreetiliselt seletada tahkete kehade kiirgusspektreid. Planck pidas kvante vaid teooriat lihtsustavateks abivahenditeks.

A. Einstein näitas 1905.a., et kvandid on reaalselt olemas, sest ta seletas nende abil ära fotoefekti katsed, mida laineteooria ei suutnud seletada.

Sellest alates on selge, et valgusnähtusi pole võimalik kirjeldada ainult lainete või ainult osakeste abil. On nähtusi, mida saab seletada lainete abil ja teisi nähtusi saab seletada kvantide abil. On ka selliseid nähtusi, mida saab seletada nii lainete kui kvantide abil. Tutvume nendega põgusalt ka käesoleva kursuse raames.

Elektromagnetismi kursuse struktuur

Me alustame elektromagnetismi õppimist tutvumisest staatilise ehk ajas muutumatu elektrivälja ning magnetväljaga. Saame teada, mida on nende kahe välja kirjeldustes ühist ja mida erinevat. Tutvume kummagi välja põhiseadusega (Coulomb’i  ja Ampère'i seadused) ning peamiste neid välju iseloomustavate vektorsuurustega, milleks on elektrivälja tugevus E ja magnetinduktsioon B. Kursuse teises osas vaatleme elektri- ja magnetvälja muutumist ajas. Elektromag­netilise induktsiooni nähtuse uurimisel selgub meile, et elektri­väli ja magnetväli on ühtse elektro­magnetvälja kaks piirjuhtu. Tutvume ka välja energiat salvestavate seadmetega, milleks elektrivälja korral on kondensaator ja magnetvälja puhul induktiivpool. Kursuse kolmandas osas uurime elektromagnetvälja levikut elektromagnetlainetena. Vaatleme valguse tekkimisel ja kadumisel ilmnevaid valguse osakese-omadusi ning valguse levimisel avalduvaid laineomadusi. Õpime kirjeldama vastavaid optilisi nähtusi: inter­ferentsi, difraktsiooni ja polarisatsiooni. Kursuse neljandas osas vaatleme valguse ja aine vastastikmõju. Põhiteemadeks on geomeetriline ehk kiirteoptika, valguse levimiskiiruse erinev muutumine eri ainetes ja valguse tekkeprotsessid. Käsitleme valguse kahte peamist tekkemehhanismi: soojuskiirgust ja luminestsentsi.

Kontrollküsimused
Miks on elektrienergiat hea kasutada?
Milline neist jõududest ei ole elektromagneetilise päritoluga?
Missuguse energialiigi arvelt ei ole tänapäeval veel õnnestunud arvestataval kogusel elektrienergiat toota?
Lisamaterjalid
Elektrilaeng
Elektrilaengu mõiste
Elektriseeritud kehade vahel mõjub jõud - laetud elektrisultani paberiribad tõukuvad üksteisest ning ning moodustavad koheva kera.

Lihtsaim elektrinähtus, mida me kõik kindlasti kogenud oleme, seisneb kehade elektriseerumises nende vastastikusel hõõrdumisel. Elektriseerunud kehade vahel mõjub jõud. Näiteks liibub kuivale nahale kunstkiust valmistatud särk. Pärast pestud ja kuivade juuste kammimist tõmbuvad juuksed kammi külge. Elektriseerunud kehade kohta öeldakse ka, et nad on laadunud või omandanud elektrilaengu.

Elektrilaeng ehk edaspidi lihtsalt laeng (tähis q või Q) on mingit keha iseloomustav füüsikaline suurus. Laeng näitab, kui tugevasti keha osaleb elektromagnetilises vastastikmõjus. Laengu olemasolu kehal saab kindlaks teha vaid elektri- ja magnetjõudude põhjal.

Sõna laeng kasutatakse õige mitmes tähenduses. Esiteks nimetatakse laenguks keha omadust osaleda elektromagnetilises vastastikmõjus. Rääkides elementaarosakese laengust, peame silmas selle osakese omadust osaleda elektri- ja magnetnähtustes. Sõna laeng teine tähendus on nimetatud omadust kirjeldav füüsikaline suurus. Kõneldes laengu suurusest, rõhutame laengu mõõtmise võimalikkust. Laengu kui suuruse mõõtmine on aga tegelikult kehade võrdlemine nende laengu kui omaduse põhjal. Peale selle mõistetakse füüsikas laengu all ka niisuguste osakeste kogumit, millel on olemas laeng kui omadus. Näiteks räägitakse ruumi mingis osas paiknevast laengust või siis laengu liikumisest. Neid väljendeid tuleb aga käsitleda lühenditena. Tegelikult on jutt ikkagi laengut omavate osakeste paiknemisest või liikumisest.

Positiivsed ja negatiivsed laengud
Samamärgiliselt laetud kehade vahel mõjub tõukejõud, erimärgiliselt laetud kehade vahel aga tõmbejõud.

Juba 9. klassi Elektriõpetusest teame, et looduses on kahte liiki laenguid. Neid on kokkuleppeliselt hakatud nimetama positiivseteks ja negatiivseteks. Selline nimetusviis võimaldab laengu liiki väljendada märgiga arvväärtuse ees (+ või –).

Meile mehaanika kursusest tuttav gravitatsioonijõud on ainult tõmbejõud. Samas tuntakse ka vaid ühte liiki “gravitatsioonilaengut”, mida on kombeks nimetada massiks. Elektrijõud võivad aga olla nii tõmbe- kui tõukejõud. Seega peab ka laenguid olema kahte liiki. Laengu arvväärtus määrab jõu suuruse, märk aga suuna. Samanimeliselt laetud kehade vahel mõjub tõukejõud, erinimeliste laengute korral aga tõmbejõud.

Elektrit mittejuhtiva niidi otsas rippuvat kerget metall­fooliumist keha nimetatakse sageli elektripendliks. Ka meie toimime edaspidi nii.

Elementaarlaeng

Füüsikalise looduskäsitluse aluste (FLA) kursuses õpitud atomistliku printsiibi põhjal teame, et ainel on olemas osakesed, mis pole jagatavad veel väiksemateks osakesteks. Kuna laeng on osakese omadus, siis ei tohiks ka laeng olla kuitahes väike.

Laengu jagatavuse küsimust asus 20. sajandi algul uurima ameerika füüsik Robert Andrews Millikan. Ta vaatles mikroskoobi abil tillukesi laetud õlipiisku, millele mõjus vertikaalselt üles suunatud elektrijõud. Kui see jõud tasakaalustas piisa raskusjõu, jäi piisk mikroskoobi vaateväljas seisma.

Olles mõõtnud piisa ruumala ning teades õli tihedust, suutis Millikan määrata piisa massi ja raskusjõu, järelikult ka elektrijõu. Selle põhjal leidis Millikan piisa laengu. Ta märkas peagi, et kõik tema katsetulemused olid mingi kindla laengu väärtuse täisarv-kordsed.

Tänapaeval on selgunud, et elementaarlaeng siiski päris elementaarne ei ole. On teada, et nii prooton kui ka neutron koosnevad kolmest "eri värvi" kvargist (joonisel tähistatud u ja d-ga). Kvargi elektrilaeng on kas +2/3 e või –1/3 e. Näiteks prootoni koostiskvarkide laengud on +2/3 e, +2/3 e ja –1/3 e. Kuna vabu kvarke seni katseliselt avastatud ei ole, siis võime rahumeeli pidada elementaarlaengut e vähimaks looduses esinevaks terviklikuks laenguks.

Vähimat katseliselt tuvastatavat laengu väärtust on hakatud nimetama elementaarlaenguks (e). 20. sajandil tehti kindlaks, et kõigi ainete aatomid koosnevad prootonitest, neutronitest ja elektronidest. Prootonid ja neutronid moodustavad aatomi tuuma, mille ümber liiguvad elektronid. Prootonil on laeng +e, elektronil –e, neutronil laeng puudub. Seega on iga keha laengu suurus nende osakeste laengute summa.

Keemiast teame, et aatomi tuum käitub keemilistes reaktsioonides stabiilse tervikuna. Aatomi kuuluvus kindlale elemendile on määratud prootonite arvuga tuumas. Neutraalses aatomis on elektrone ja prootoneid ühepalju. Elektronide lisandumisel aatomisse moodustub negatiivne ioon ja elektronide lahkumisel positiivne ioon. See võimaldab mõista kehade elektriseerumist hõõrdumisel. Sõltuvalt vastavate ainete aatomite ehitusest võivad väliskihi elektronid ehk valentselektronid ühelt kehalt teisele üle minna. Keha, mis saab elektrone juurde, laadub negatiivselt. Seevastu keha, millelt elektronid ära rebiti, laadub positiivselt, sest tema aatomi­tuumade positiivne laeng on osaliselt tasakaalustamata. Elementaarlaenguga osakeselt ei saa tema laengut ära võtta nii nagu elektriseerimisel rebitakse kehalt lahti elektrone. Laeng on osakesele sama kindlalt omane suurus nagu mass. Kui näiteks elektronil ei oleks laengut –e, siis ta polekski enam elektron. Negatiivse elementaarlaengu olemasolu on üks tunnustest, mis määrab elektroniks nimetatava osakese. Elementaarlaengu jagamatuses avaldub atomistlik printsiip.

Laengu jäävuse seadus
J.1.4 Neutroni (n) lagunemine prootoniks (p) ja elektroniks (e). Lagunemise tulemusena süsteemi kogulaeng ei muutu.

Mehaanikast teame, et impulss ja energia on suletud süsteemis jäävad suurused. Elektrinähtuste uurimisel selgub, et ka elektrilaeng on jääv. Laeng ei teki ega kao. Kehade süsteemi kogulaeng saab muutuda vaid laetud osakeste sisenemisel süsteemi või väljumisel sellest. Kui laetud osakeste niisugust liikumist ei toimu, nimetatakse süsteemi elektriliselt isoleerituks. Tegemist on tüüpilise suletud süsteemiga. Selle mõistega tutvusime juba Füüsikalise looduskäsitluse aluste kursuses.

Laengu jäävuse seadust pole kuigi lihtne rangelt tõestada. Vastavas katses peaks ju mõõtemääramatus olema väiksem elementaarlaengust. Paljud erinevad elektrinähtused on aga seletatavad vaid lähtudes laengu jäävusest. Seetõttu usuti laengu jäävuse seaduse kehtivusse juba ammu enne elektronide ja prootonite avastamist.

Foto elektroni ja positroni trajektooride mullidest tekkinud jälgedest mullikambris. Osakeste paar tekkis gammakiirguse toimel, mis sisenes kambrisse läbi selle põhja.

Selgeid viiteid laengu jäävuse seadusele leiame keemiast. Tervikuna neutraalne keedusoola (NaCl) kristall dissotsieerub lahustumisel vees positiivseteks naatriumi ja negatiivseteks kloori ioonideks (Na+ ja Cl), mida tekib ühepalju.

Laengu jäävuse seadus sai füüsikas lõpliku kinnituse alles osakeste vahel toimuvate muundumisreaktsioonide uuri­misel. Selgus, et laetud osakeste teke või kadumine nendes reaktsioonides on võimalik vaid paarikaupa. Uue positiivse osakese tekkimisel ilmub ka negatiivne osake. Nii näiteks tekivad vaba neutroni lagunemisel üheaegselt positiivne prooton ja negatiivne elektron (J.1.4). Neutron ongi siin see elektriliselt isoleeritud süsteem, millest oli juttu eespool.

Laengu jäävus väljendab maailma üldist keskmist elektrilist neutraalsust. Kujutlegem hetkeks, mis juhtuks, kui kõigis kehades oleksid ühte liiki laenguga osakesed ülekaalus. Sel juhul mõjuksid ju kõigi kehade vahel elektrilised tõukejõud. Seda me aga looduses ei näe. Meid ümbritsevad kehad on tavaliselt neutraalsed. Positiivse ja negatiivse laenguga osakesi on neis ühepalju. Kui üks keha saab positiivse laengu, siis laadub mingi teine keha negatiivselt. Kehade laengute summa jääb muutumatuks. Aga see ju ongi laengu jäävus.

Niisiis kehtib laengu jäävuse seadus: elektriliselt isoleeritud süsteemi kogulaeng on jääv suurus.

Elektrit juhtivad ja mittejuhtivad ained
Osad materjalid juhivad elektrit paremini, osad halvemini. Näiteks kummi on mittejuht, vask aga väga hea juht. Enamus ülejäänud ainete elektrijuhtivus jääb nende kahe vahele.

Hõõrdeelektrit uurides märkame kohe, et ained erinevad oma elektrijuhtivuse poolest. Kui näiteks kuivad juuksed kammi külge tõmbuma hakkavad, siis võime sellest jagu saada kammi niisutades. Seega on kraanivesi elektrit juhtiv aine. Läbi tema lahkuvad laetud osakesed kammilt. Puhas (destilleeritud) vesi aga ei juhi elektrit. Samuti ei õnnestu meil tavaliselt hõõrumise teel laadida märgi esemeid ja metallkehi, sest tasakaalustamata laeng lahkub neilt. Laenguga osakesed liiguvad läbi eseme ja seejärel läbi meie käte.

Inimkeha juhib elektrit suhteliselt hästi. Metalleset ei õnnestu hõõrumise teel elektriseerida just seetõttu, et nii ese kui ka seda hoidev käsi juhivad elektrit. Olles tõmmanud kätte kummikinda, võime elektriseerida ka metalleset. Kummi elektrit ei juhi ning laeng püsib esemel.

Põhikooli Elektriõpetusest teame, et metall ja kraanivesi sisaldavad arvukalt liikumisvõimelisi laetud osakesi ehk vabu laengukandjaid. Sõnaga vaba tähistame seejuures laetud osakese võimet liikuda elektrijõudude toimel kogu vaadeldava keha või ainekoguse piires. Nagu kõik aineosakesed, nii osalevad ka laengukandjad kaootilises soojusliikumises. Kui aga neile mõjub kindla suunaga elektrijõud, hakkavad nad täiendavalt liikuma ka selle jõu mõjul.

Vabade laengukandjate sisalduse järgi jagunevad ained kolme rühma: juhid, dielektrikud (ehk mittejuhid või ka isolaatorid) ja pooljuhid.

Eesti ja Soome vahelisel merekaabli Estlink ristlõige. Vasest juhtivate kihtide vahel on dielektriku kiht (pildil must).

Juhid on ained, milles vabade laengukandjate arv on väga suur. See ei erine oluliselt aatomite (või molekulide) üldarvust. Tüüpilised juhid on metallid, kuna valentselektronid pole neis seotud ühegi kindla aatomiga ja on järelikult vabadeks laengukandjateks. Elektrit juhtivates vedelikes (näiteks kraanivees) täidavad vabade laengukandjate osa keemiliste lisandite ioonid.

Dielektrikud ehk mittejuhid sisaldavad väga vähe vabu laengukandjaid ning seetõttu on neis tekkiv elektrivool reeglina väga nõrk. Vabade laengukandjate puudumine gaasilises või vedelas dielektrikus on enamasti põhjustatud sellest, et dielektriku aatom või molekul on elektriliselt neutraalne süsteem. Elektrijõud ei suuda laetud osakesi sellest süsteemist välja rebida. Tahke dielektrik võib küll koosneda erimärgiliselt laetud ioonidest, aga elektrijõud ei suuda neid liikuma panna.

Pooljuhtide omadustel baseerub suur osa tänapäevasest elektroonikast.

Pooljuhid on saanud oma nime vahepealse elektrijuhtivuse järgi juhtide ja dielektrikute kui kahe äärmuse vahel. Laengukandjad ei ole pooljuhtides küll alati vabad, kuid neid saab suhteliselt kergesti vabadeks muuta. Seetõttu on pooljuhtidele iseloomulik vabade laengukandjate arvu tugev sõltuvus temperatuurist, pealelangevast valgusest, lisandite sisaldusest põhiaines jne. Pooljuhi elektrijuhtivus on nende tingimuste muutmise teel reguleeritav. See pooljuhtide väärtuslik omadus leiab laialdast kasutamist nüüdisaegses elektroonikas.

Kindlaid piire ainete kolme rühma vahel pole. Näiteks on metallis vabade laengukandjate arv aatomite üldarvust tavaliselt suurem, sest aatomil võib olla väliskihis mitu elektroni, mis saavad muutuda vabadeks laengukandjateks. Ainet loetakse aga juhiks veel ka siis, kui mitme tuhande aatomi või molekuli kohta tuleb vaid üks vaba laengukandja. Nii on see näiteks kraanivee korral. Pooljuhtides on vabade laengukandjate arv aatomite arvust väiksem ligikaudu miljon korda, dielektrikutes aga reeglina üle miljardi korra.

Veel tuleb märkida, et sõna juht kasutatakse nii elektrit juhtiva aine kui ka sellest ainest valmistatud keha tähistamiseks.

Elektrivool ja voolutugevus

Laengukandjate suunatud liikumist nimetatakse elektrivooluks.

J.1.5 Juht ja tema ristlõige.

Voolu tekkimiseks on vajalik nii vabade laengukandjate olemasolu kui ka nende liikumist põhjustav jõud. Elektrivoolu iseloomustavaks suuruseks on voolutugevus I. Voolutugevus näitab, kui suur laeng läbib ajaühikus juhi ristlõiget

(1.1)

Ristlõike all mõistetakse seejuures voolu suunaga ristuva lõike pinda (J.1.5). Voolu suunaks on kokkuleppeliselt valitud positiivsete laengukandjate liikumise suund. Negatiivsed laengukandjad (näiteks elektronid metallis) liiguvad seega voolu kokkuleppelisele suunale vastupidises suunas (J.1.6).

On oluline mõista, et pole üldse tähtis, kumma märgiga laengukandjad reaalselt aines liiguvad. Nii positiivsete laengukandjate liikumine paremale kui negatiivsete liikumine vasakule joonisel 1.6 tähendab üht ja sedasama voolu suunda. Liikuvate laengukandjate märgi määramine on võimalik vaid keerulisemates katsetes. Tavalise vooluringi korral me laengukandjate märki teada ei saagi, aga see asjaolu ei sega vooluringide uurimist.

J.1.6 Elektrivoolu kokkuleppelise suuna määramine.

Voolutugevuse ühikuks on üks amper (1 A). Amper on SI elektriline põhiühik. See tähendab, et kõik teised elektriliste suuruste mõõtühikud tuletatakse tema abil. Amper defineeritakse vooluga juhtmete magnetilise vastastikmõju kaudu (p.1.4.2). Voolutugevuse I leidmiseks peame juhi ristlõiget läbiva laengu q jagama selleks kuluva ajaga t (valem 1.1 ). Laeng ise on seega esitatav voolutugevuse ja aja korrutisena

(1.2)

Viimase seose põhjal on defineeritud elektrilaengu SI-ühik üks kulon (1 C). Kui voolutugevus juhis on üks amper, siis läbib ühe sekundi jooksul juhi ristlõiget laeng suurusega üks kulon. Järelikult

Elementaarlaengu väärtus on 1,6021892·10-19 kulonit. Prak­ti­listes arvutustes piisab reeglina täpsusest

Üks kulon on väga suur laeng. Kammi või klaaspulka elektriseerides anname talle laengu, mille suurusjärk on üks nanokulon kuni üks mikrokulon (1 μC = 10-6 C). Ta­be­lis 1.1 on toodud mõned iseloomulikud voolutugevused.

Tabel 1.1

Elektrinähtus või elektriseade

Voolutugevus

Biovoolud elusorganismides

alla 10-6 A

Raadio, CD-mängija, muusikakeskus

0,01 – 0,1 A

Võrgutoitega elektrilambi või taskulambi hõõgniit

0,2 – 0,5 A

Autolaterna hõõgniit, tänavavalgusti

1 – 5 A

Elektripliidi või soojapuhuri küttekeha

2 – 20 A

Trammi või elektrirongi mootor, auto käiviti

100 – 500 A

Keevitusagregaat

100 – 1000 A

Välgu helendav kanal

kuni 106 A

Voolutugevus välgukanalis on väga suur.

Maksimaalset laengut, mille vooluallikas suudab vooluringist läbi viia, nimetatakse sageli vooluallika mahutavuseks (mitte mahtuvuseks!) ja teda mõõdetakse amper-tundides. Kui voolutugevus juhis on üks amper, siis läbib ühe tunni jooksul juhi ristlõiget laeng üks amper-tund (1 A·h).

Kuna ühes tunnis on 3600 sekundit, siis 1 A·h = 1 A·3600 s = 3600 C.

Leiame, millise aja jooksul suudab auto käivitit toita aku, mille mahutavus on 50 A·h. Käiviti tarbib voolu 200 A.

Lahendus

Andmed

Arvutused:

Aku mahtuvuseks leiame

Valemist 1.1 saame

Seega

Vastus: Aku suudab käivitit toita maksimaalselt 900 sekundi ehk 15 minuti jooksul. 

Igaüks, kes autodega lähemalt kokku on puutunud, teab hästi, et tegelikult ei saa käivitil nii kaua töötada lasta. Miks see nii on, selgub Energia kursuses.

Kokkuvõte

Laeng

Laeng on füüsikaline suurus, mis näitab, kui tugevasti keha osaleb elektromagnetilises vastastikmõjus.

Kahte liiki laengud

Looduses leidub kahte liiki laenguid, mida nimetatakse positiivseteks ja negatiivseteks (+ ja –). Samamärgiliselt laetud kehade vahel mõjub tõukejõud, erimärgiliselt laetud kehade korral aga tõmbejõud.

Laengu jäävuse seadus

Kehtib laengu jäävuse seadus: elektriliselt isoleeritud süsteemi kogulaeng on jääv suurus.

Elementaarlaeng

Vähimat võimalikku laengu väärtust nimetatakse elementaarlaenguks e.

Elektrivool

Elektrivooluks nimetatakse laengukandjate suunatud liikumist.

Kontrollküsimused
Oletagem, et laenguid on mitte kahte, vaid koguni kolme liiki. Nimetagem neid A-, B- ja C-laenguteks.Samaliigiliselt laetud kehade (näiteks A ja A) vahel mõjuvad teatavasti tõukejõud. Seega oleks A-, B- jaC-laengute eristamisel mõtet vaid juhul, kui A- ja B-laengu ning A- ja C-laengu korral mõjuvad tõmbejõud erineksid. Niisugust erinevust seni leitud ei ole. Mida ütleb selline tulemus laenguliikide arvu kohta?
Lugedes mingit elektrialast teksti (näiteks käesolevas õpikus), püüdke iga kord sõna laeng juures määrata, kas seda sõna on kasutatud keha omaduse, mõõdetava suuruse või laetud osakeste kogumi tähenduses.
Millisele sõna "laeng" tähendusele taanduvad kõik teised kasutusvõimalused?
LisamaterjalidLisaülesanded
Coulomb'i seadus
Coulomb'i katsed

Coulomb’i poolt kasutatud katseseade.

Elektrijõude asus 1784. aastal mõõtma Charles de Coulomb. Mõõteseadmena kasutas ta väändkaalu ehk torsioonkaalu. Väändkaalu töö aluseks on mõõdetava jõu võrdlemine peenikese traadi väändel tekkiva elastsusjõuga.Coulomb’i poolt kasutatud väändkaalu korral (J.1.7) rippus traadi (1) küljes horisontaalne mittejuhtiv varras (2), mille ühes otsas paiknes uuritav metallkuulike (3), teises otsas aga kuulikest tasakaalustav raskus (4). Vardaga ristuva jõu rakendumisel kuulikesele pöördus varras seni, kuni traadi väände elastsusjõud tasakaalustas kuulikesele mõjuva jõu. Coulomb tegi kindlaks, et nurk j, mille võrra varras joonisel punktiiriga kujutatud tasakaaluasendist välja pöördus, oli võrdeline jõuga. See võimaldas pöördenurga kaudu jõudu mõõta. Oma katsete korraldamisel lähtus Coulomb eeldusest, et varda küljes paikneva, algselt neutraalse kuulikese (3) puudutamisel teise täpselt samasuguse, kuid laetud kuulikesega (5) jaotub laeng kahe kuulikese vahel võrdselt.

Coulomb mõõtis kuulikeste vahel mõjuva jõu F ja suurendas kuulikeste vahekaugust kaks korda. Selle tulemusena vähenes jõud neli korda. Nüüd suurendas Coulomb kuulikeste vahekauguse esialgsega võrreldes kolmekordseks ja veendus selles, et jõud oli üheksa korda esialgsest väiksem. Seega vahekaugusel r mõjus laetud kuulikeste vahel jõud F, vahekaugusel 2r jõud F/4, vahekaugusel 3r jõud F/9 jne. Tulemus oli esitatav ka kujul

Nii võis Coulomb teha järelduse, et laetud kehade vahekauguse ruudu ja elektrijõu korrutis on konstantne, teiste sõnadega: laetud kehade vahel mõjuv elektrijõud on pöördvõrdeline kehade vahekauguse ruuduga

Selleks et uurida kuulikeste muutumatu vahekauguse korral jõu sõltuvust laengu suurusest, juhtis Coulomb ühelt vaadeldavalt kuulikeselt laengu ära ning viis kuulikesed uuesti kokkupuutesse. Kui esialgu oli mõlemal kuulikesel laeng q, siis nüüd jäi mõlemale kuulikesele laeng q/2. Kuulikeste vahel mõjuv jõud aga oli sama vahekauguse korral esialgsest neli korda väiksem, seega F/4. Sellise protseduuri kordamisel jäi kuulikestele laeng q/4, jõud aga kahanes väärtuseni F/16. Coulomb mõistis, et kui laeng kahaneb mingi arv kordi, siis jõud kahaneb see arv ruudus kordi. Teisiti öeldes: jõu ja laengu ruudu jagatis on konstantne

Coulomb järeldas, et jõud on võrdeline laengu ruuduga

Teatavasti on mingi arvu ruudu leidmine korrutamise erijuht. Selle põhjal võis Coulomb nüüd väita, et erinevalt laetud kehade vahel mõjuv jõud on võrdeline laengute korrutisega.

Coulomb'i seadus. Punktlaeng
J.1.11 Kahe laetud keha vahel mõjuv elektrijõud on võrdeline kummagi keha laenguga ja pöödvõrdeline kehade vahekauguse ruuduga.

Coulomb jõudis gravitatsiooniseadusega väga sarnase tulemuseni: kahe laetud keha vahel mõjuv elektrijõud on võrdeline kummagi keha laenguga ja pöördvõrdeline kehade vahekauguse ruuduga

kus on võrdetegur. See jõud mõjub laetud kehi ühendava sirge sihis ning sõltub ainest, milles laetud kehad asuvad. Jõud on suurim vaakumis, aga peaaegu niisama suur on ta ka õhus. Jõud on samanimeliste laengute jaoks tõukejõud ja erinimeliste laengute korral tõmbejõud. Jõu mõjumise siht on kehade asukohtadega määratud. Järelikult on jõul kui vektoril vaid kaks võimalikku suunda. Jõu suunda antud sihil võib kirjeldada jõu arvväärtuse ees paikneva märgiga (+ või – ). See omakorda on leitav laengute märkide põhjal. Niisiis tähistab valemis 1.3 ja ka edaspidi jõuvektori pikkust, mis võib olla nii positiivne kui ka negatiivne.

J.1.8 Kahe laetud keha vahel mõjuva jõu märgi määramine: a) samamärgilised laengud - jõud positiivne, b) erimärgilised laengud - jõud negatiivne.

Me vaatleme ühele laetud kehale mõjuvat jõudu positiivsena, kui see on suunatud teisest kehast eemale. Negatiivseks loeme jõudu aga siis, kui see on suunatud teise keha poole. Samanimeliste laengute korrutis on valemis 1.3 alati positiivne. Seega mõjub samanimeliselt laetud kehade vahel positiivne jõud ehk tõukejõud. Erinimeliste laengute korrutis on negatiivne ning kehade vahel mõjub negatiivne jõud ehk tõmbejõud (J.1.8). Sellise kokkuleppega vabaneme vajadusest kasutada jõudu sisaldavates valemites vektorkuju.

Kõigi Coulomb’i katsete kirjeldustes nimetasime vahekauguseks kuulikeste tsentrite vahelist kaugust. Kui kuulikeste läbimõõt on tühiselt väike võrreldes kuulikeste vahekaugusega, pole selle asjaolu rõhutamine eriti tähtis. Kui aga kuulikeste läbimõõt on vahekaugusele lähedane, siis tuleb vahekauguse mõistet täpsustada. Omavahelise tõukumise tõttu asetuvad samamärgilist laengut kandvad osakesed kummagi kuulikese sellesse ossa, mis jääb teisest kuulikesest võimalikult kaugele (J.1.9). Selle tagajärjel on laengutevaheline kaugus kuulikeste tsentrite vahekaugusest suurem.

Kuulikeste vahel mõjuv jõud on aga Coulomb’i seaduse põhjal väiksem sellest jõust, millega mõjutaksid teineteist kuulikeste tsentrites paiknevad laengud. Sõna laeng tähendab siin mõistagi laetud osakeste kogumit. Coulomb’i seadus on lühidalt ja täpselt sõnastatav vaid niisuguste laetud kehade jaoks, mille mõõtmed on tühised võrreldes kehade vahekaugusega. Selliseid laetud kehi nimetatakse punktlaenguteks (J.1.10). Punktlaeng mängib elektriõpetuses sama rolli, mis punktmass Mehaanika kursuses. Mistahes keha võib käsitleda punktlaenguna juhul, kui laengu jaotumise keha osade vahel tohib antud ülesandes arvestamata jätta. Keha laengut vaadeldakse siis koondununa ühte punkti. Mingi keha võib ühes ülesandes esineda punktlaenguna, teises aga mitte. Näiteks on laetud veepiisake äikesepilve ja Maa vahel vaadeldav punktlaenguna. Piisa pinna lähedal asuva üksiku iooni jaoks aga laetud veepiisk kindlasti punktlaeng ei ole.

Elektrikonstant

Avaldades valemist 1.3 võrdeteguri , saame

J.1.11 Mõtteline katse võrdeteguri k määramiseks - see on arvuliselt võrdne vaakumis teineteisest 1m kaugusel asuva 1C suuruste laengute vahel mõjuva jõuga.

Tegur võrdub arvuliselt jõuga, mis mõjub vaakumis kahe teineteisest 1 m kaugusel paikneva punktlaengu 1 C vahel (J.1.11). Katsetest on kindlaks tehtud, et see jõud oleks 9·109 N ehk niisuguse keha raskusjõud, mille mass on peaaegu miljon tonni. Nii koletule jõule ei suuda vastu panna ükski terastross ega mingi muu ühenduslüli. On ju raske rongi mass “ainult” mõni tuhat tonni ja suure laeva mass ulatub mõnekümne tuhande tonnini. Järelikult on üks kulon väga suur laeng.

Võrdetegur Coulomb’i seaduses on seega vaakumi korral esitatav kujul

Näide 1.2.

Ülesande joonis

Leiame Coulomb’i seaduse kohaselt elektrijõu , millega ringjoonelisel orbiidil liikuv elektron ja ringjoone tsentris paiknev prooton mõjutavad teineteist vesiniku aatomi planetaarses mudelis (vt joonist). Osakeste vahekauguseks loeme vesiniku aatomi raadiuse, mis Bohri mudeli kohaselt on .

Lahendus

Leiame Coulomb’i seaduse kohaselt elektrijõu , millega ringjoonelisel orbiidil liikuv elektron ja ringjoone tsentris paiknev prooton mõjutavad teineteist vesiniku aatomi planetaarses mudelis (vt joonist). Osakeste vahekauguseks loeme vesiniku aatomi raadiuse, mis Bohri mudeli kohaselt on .

Andmed


Arvutused:

Teame, et

kus

Seega

(miinusmärk näitab, et tegemist on tõmbejõuga). Järelikult

Vastus: Elektroni ja prootoni vahel mõjub elektriline tõmbejõud . Nende osakeste vahel mõjuv gravitatsioonijõud on samas vaid . Seega on elektrijõud vesiniku aatomis gravitatsioonijõust suurem üle  korra.

Kokkuvõte

Punktlaeng

Punktlaenguteks nimetatakse laetud kehi, mille mõõtmed on tühiselt väikesed võrreldes nende vahekaugusega.

Coulomb'i seadus

Kaks punktlaengut mõjutavad teineteist jõuga, mis on võrdeline nende laengute korrutisega ja pöördvõrdeline laengutevahelise kauguse ruuduga (Coulomb’i seadus). Jõud on suunatud piki laenguid ühendavat sirget.

Kontrollküsimused
Mille poolest sarnanevad ja milles erinevad gravitatsioonijõud ja elektrijõud?
Kui suur laeng peaks olema Maal ja Kuul, et elektrijõud suudaks hoida Kuud tiirlemas samal kaugusel Maast, millel teda tegelikult hoiab gravitatsioonijõud? Kuu mass on ligikaudu 7,3×1022 kg, Maa mass aga 6,0×1024 kg. Gravitatsioonikonstandi väärtus on 6,67×10–11 N . m2/kg2.
KontrollküsimusedLisamaterjalid
Ampère seadus
Magnetväli. Püsimagnetid
Vooluga juhet ümbritseb magnetväli.

Juba 9. klassi Elektriõpetuses oli juttu sellest, et vooluga juhet ümbritseb magnetväli. Elektrivool on aga laengukandjate suunatud liikumine. Seega tekib laengukandjate suunatud liikumise tulemusena magnetväli.

Magnetväljaks nimetatakse laetud osakeste liikumisel tekkivat jõuvälja. Paigalseisev laeng (laetud keha) kutsub esile elektrivälja, liikuv laeng (elektrivool) aga täiendavalt ka magnetvälja. Seega on magnetvälja olemasolu mingi vaatleja jaoks niisama suhteline kui liikumine ise.

Samas pole magnetnähtuste tekkimiseks sugugi alati vaja elektrivoolu. Esmase kogemuse magnetismiga on igaüks meist saanud mitte voolu vaid just püsimagneti magnetvälja kaudu.

Püsimagnet on olemuslikult magnetvälja omav keha. Selle magnetvälja tekitavad osakesed, millest püsimagnet koosneb. Nii elektron, prooton kui ka neutron tekitavad juba üksnes oma olemasoluga magnetvälja. Seejuures määrab püsimagneti omadused eelkõige elektronide olemuslik magnetväli.

Elektronide spinne võib ette kujutada põhjustatuna nende pöörlemisest ümber oma telje. Elektronide spinne rakendades loodetakse luua seni kasutatutest oluliselt võimekamaid mäluseadmeid.

Aineosakese omamagnetväli on seotud osakese sisemise liikumise ehk spinniga. Nimetus tuleneb spinni tõlgendamisest aineosakese pöörlemisena ümber oma telje (ingl.k. to spin - pöörlema). Seda pöörlemist ei saa peatada. Võib vaid muuta pöörlemistelje asendit ruumis. Spinniga kaasneb alati kindel magnetväli, mis on suunatud piki pöörlemistelge. Spinn on osakest sama kindlalt iseloomustav suurus nagu laeng või mass. Seetõttu käsitletakse spinni omalaadse "pöörlemislaenguna". Spinnil puudub lihtne klassikaline mudel, mis kirjeldaks kõiki katsetulemusi. Seetõttu oleme sunnitud leppima üpris ebakonkreetse määratlusega "sisemine liikumine".

Püsimagneti juures võib tinglikult eristada kahte piirkonda, mille mõttelisi keskmeid nimetatakse põhjapooluseks ja lõunapooluseks (tähised vastavalt N ja S). Tähistusviis tuleneb väikese pöördumisvõimelise püsimagneti ehk magnetnõela käitumisest Maa magnetväljas. Nimelt on magnetnõelal kalduvus orienteeruda ehk asetuda ligikaudu piki geograafilist põhja-lõuna suunda.

Orienteerunud magnetnõela seda otsa, mis näitab geograafilist põhjasuunda, on hakatud nimetama magnetnõela või püsimagneti põhjapooluseks ja magnetnõela geograafiliselt lõunapoolset otsa lõunapooluseks.

Magnetnõela kindlaviisiline asetumine magnetväljas määrab magnetvälja kirjeldava vektoriaalse suuruse ehk B-vektori suuna. B-vektorist tuleb lähemalt juttu punktis 1.5.2.

Juba 13. sajandil tehti kindlaks, et ühe püsimagneti põhjapoolus ja teise lõunapoolus tõmbuvad, sama liiki poolused aga tõukuvad. See tulemus oli pöördelise tähtsusega, kuna tavakogemuse kohaselt püsimagnet vaid tõmbab raudesemeid enda poole.

Raudesemete tõmbumist püsimagneti mistahes pooluse suunas põhjustab rauatüki ajutine muutumine magnetiks. Seejuures tekitab püsimagneti üks poolus just rauatüki endapoolses küljes vastupidise magnetpooluse ja kutsub niimoodi esile tõmbejõu. Nähtust, mille korral magnetvälja paigutamise tulemusena hakkab aine ka ise tekitama magnetvälja, nimetatakse aine magneetumiseks.

J.1.13 Püsimagneti pooli­ta­mine: tulemuseks on kaks uut püsimagnetit.

Magnetpooluste uurimisel avastati veel, et püsimagneti poolitamise tulemuseks ei ole mitte kaks lahutatud magnetpoolust, vaid kaks uut püsimagnetit, millel on kummalgi oma põhjapoolus ja oma lõunapoolus (J.1.13). See näitab selgesti pooluste tinglikkust. Järelikult on sarnasus kahe märgiga elektrilaengute ja kahte liiki magnetpooluste vahel vaid näiline. Erimärgilisi elektrilaenguid on ju võimalik ruumis lahku viia, magnetpoolustega seda aga teha ei saa.

J.1.14 Osakeste ühesuunalised omamagnetväljad püsimagnetis.

Arvestades, et püsimagneti väli on põhjustatud osakeste omamagnetväljadest, on niisugune tulemus aga kergesti mõistetav. Koosnevad ju kõik püsimagneti piirkonnad ühtedest ja samadest osakestest. Järelikult ei saagi püsimagneti osade vahel põhimõttelist erinevust olla. Magnetpooluste eristamisega kirjeldatakse vaid püsimagneti poolt tekitatava magnetvälja suunda (J.1.14).

Pärast seda, kui Coulomb oli 1785. aastal avastanud elektrijõu pöördvõrdelise sõltuvuse laetud kehade vahekauguse ruudust, asus ta korraldama samalaadseid katseid püsimagnetitega. Coulomb jõudis järeldusele, et ka magnetpooluste vahel mõjuv jõud on pöördvõrdeline poolustevahelise kauguse ruuduga. Niisiis on jõu sõltuvus vastastikmõjus olevate kehade vahelisest kaugusest ühesugune nii elektrijõu kui magnetjõu korral.

Voolu magnetväli. Ampère seadus

Elektrivoolu magnetvälja uurimise alguseks võib pidada aastat 1820, mil oma töö põhitulemuse avaldas Taani füüsik Hans Christian Oersted. Nimelt avastas Oersted, et juhet läbiv elektrivool avaldab magnetnõelale orienteerivat mõju. Magnetnõel pöördub juhtmega ristuvasse asendisse. Orienteerunud magnetnõel ei ole aga risti mitte ainult juhtme endaga, vaid ka tasandiga, mille määravad juhe ning magnetnõela keskme kinnituspunkt (J.1.15).

See oli tõeliselt üllatav tulemus. Kõik 19. sajandi alguseks tuntud jõud olid ju suunatud piki teineteist mõjutavate kehade keskmeid ühendavat sirget. Seetõttu arvati, et vooluga juhe võiks magnetnõela ühte poolust tõmmata ja teist tõugata. Nagu näeme, on magnetnõelale mõjuvad jõud hoopis risti juhet ja magnetnõela ühendava sirglõiguga.

Oerstedi katse vallandas elektrivoolu magnetvälja uurimisel tõelise laviini. Juba samal 1820. aastal avastasid prantslased Jean-Baptiste Biot [bioo] ja Felix Savart [savaar], et vooluga juhtme mingi lõigu poolt magnetnõela mingile kindlale poolusele mõjuv ja magnetnõela pöörav jõud on võrdeline vaadeldava juhtmelõigu pikkusega ning voolutugevusega juhtmes (J.1.16).

Samas osutus see jõud pöördvõrdeliseks juhtmelõigu ning magnetnõela vahelise kauguse ruuduga, nii nagu Coulomb’i seaduse kohaselt kahe punktlaengu vahel mõjuv jõud. Biot ja Savart leidsid ka, et magnetjõud on tugevaim juhul, kui magnetnõel paikneb vaadeldava juhtmelõigu keskristsirgel. Kui aga magnetnõel asetseb juhtmelõigu pikendusel (juhtmega samal sirgel), siis muutub nõelale mõjuv jõud nulliks (J.1.17). Biot ja Savart mõõtsid magnetjõudu, lastes magnetnõelal võnkuda oma tasakaaluasendi ümber. Mida kiirem (suurema sagedusega) see võnkumine on, seda tugevam on tasakaaluasendi poole suunatud magnetjõud. Täpsemalt öeldes on magnetjõud võrdeline magnetnõela võnkesageduse ruuduga.

J.1.17 Juhtmelõigu poolt magnetnõelale mõjuva jõu sõltuvus nõela asukohast: a) magnetnõel paikneb juhtme kesksirgel, b) magnetnõel paikneb juhtmelõigu pikendusel.

Lähtudes teadmisest, et elektrivool on suuteline mõjutama püsimagnetit, on loomulik küsida, kas ka kaks vooluga juhet teineteist magnetjõuga mõjutavad. Veel samal 1820. aastal näitas André Marie Ampère, et see on tõesti nii. Ampère tuli esimesena mõttele, et magnetvälja tekitab laengukandjate liikumine. Enne teda püüti voolu magnetvälja taandada püsimagneti väljale. Nimelt arvati, et voolu tekitamine juhtmes muudab juhtme mingil viisil püsimagnetiks. Ampère aga esitas julgelt vastupidise hüpoteesi: just püsimagneti väli on põhjustatud tema sees kulgevatest ringvooludest. Hiljem selgus, et Ampère’il oli selles ka üksjagu õigus. Mõnede ainete magnetilised omadused on tõesti määratud neis moodustunud vooluringide magnetväljaga.

Ampère uuris kõigepealt kahe juhtme vastastikmõju juhtmete muutumatu pikkuse ja vahekauguse korral ning avastas järgmised seaduspärasused:

J.1.18 Paralleelsete juhtmelõikude vahel mõjuvad jõud, kui voolud on: a) samasuunalised, b) vastassuunalised.
  1. Kui kaks juhtmelõiku paiknevad erinevates tasandites, kuid risti nende keskpunkte ühendava lõiguga, kusjuures paiknemistasandi määravad kummagi juhtme jaoks juhe ise ja ühenduslõik, siis juhtmelõikude vahel mõjuv jõud sõltub nurgast nende vahel. Paralleelsete juhtmete korral on jõud maksimaalne. Ristuvate juhtmete keskmete vahel jõudu ei mõju.
  2. Kui paralleelsetes juhtmetes kulgevad samasuunalised voolud, siis mõjub juhtmete vahel tõmbejõud. Vastassuunaliste voolude korral mõjub tõukejõud (J.1.18).
  3. Jõud on alati risti juhtmelõiguga, millele ta mõjub.

Seega on voolude vastastikmõju mingis mõttes vastupidine laengute vastastikmõjule. Teatavasti mõjub samanimeliste laengute vahel tõukejõud, samasuunaliste voolude vahel aga tõmbejõud. Vastandmärgilised laengud tõmbuvad teineteise poole, vastandlike suundadega voolud aga tõukuvad teineteisest eemale. Järgnevalt asus Ampère välja selgitama paralleelsete sirgjuhtmete vastastikmõju sõltuvust nende pikkusest ja vahekaugusest. Ta tegi kindlaks, et juhtmete vahel mõjuv magnetjõud on võrdeline voolutugevustega  ja  kummaski juhtmes ning vaadeldava juhtmeosa pikkusega . Samas osutus see jõud pöördvõrdeliseks juhtmete vahekaugusega . Katsete tulemused võis Ampère kokku võtta valemisse

milles sisalduv konstant sõltub üldjuhul ainest, kus juhtmed asuvad.

Ampère’i seaduse (valem 1.7 ) kaudu on määratud voolutugevuse ühik amper (1 A).

Kui kahe paralleelse, lõpmata pika ja lõpmata peenikese sirgjuhtme vahel, mille vahekaugus on üks meeter ja milles voolab ühesuguse tugevusega vool, mõjub vaakumis juhtmete pikkuse iga meetri kohta jõud 2·10–7 njuutonit, siis on voolutugevus juhtmetes üks amper (J.1.19). Valemis 4.1 sisalduva konstandi  väärtus on vaakumi korral seega 2·10–7 N/A2.

J.1.19 Voolutugevuse mõõtühiku 1A määrav katse.

Lõpmata pikki ja peenikesi juhtmeid tegelikkuses mõistagi olemas ei ole. Seetõttu loetakse ampri etalonkatse teostatuks seda paremini, mida suurem on juhtmete vahekaugus võrreldes nende läbimõõduga ning mida pikemad on omakorda juhtmed võrreldes nende vahekaugusega. Amper on SI elektriliseks põhiühikuks. Selle kaudu tuletatakse kõigi teiste elektriliste suuruste mõõtühikud. Samas on ampri definitsioon niivõrd pikk, et lõppu välja jõudes kipub algus juba meelest minema. Seepärast ei tasuks seda mitte luuletuse kombel pähe õppida, vaid püüda silme ees hoida joonist 1.19.

Näide 1.3

Leiame magnetjõu, millega mõjutavad teineteist elektrilise õhuliini kaks juhet, kui kummaski on parajasti vool tugevusega , juhtmete vaheline kaugus on ja elektripostide vahekaugus on . Sõnaga parajasti rõhutame seejuures asjaolu, et elektriliini juhtmetes voolab tavaliselt vahelduvvool, mille tugevus ajas perioodiliselt muutub. Meie aga vaatleme voole ja seega ka jõudu mingil kindlal ajahetkel. Siis on vooludel kindel suund.

Lahendus

Andmed



Arvutused

Valemist 1.7 teame, et

Järelikult

Kokkuvõte

Magnetväli

Magnetväljaks nimetatakse laetud osakeste liikumisel tekkivat jõuvälja.

Püsimagnet

Püsimagnet on olemuslikult (ka elektrivoolu puudumisel) magnetvälja omav keha.

Püsimagneti poolused

Püsimagneti juures eristatakse tinglikult kahte piirkonda, mille mõttelisi keskmeid nimetatakse põhjapooluseks ja lõunapooluseks. Erinimeliste magnetpooluste vahel mõjub tõmbejõud, samanimeliste pooluste vahel aga tõukejõud.

Oerstedi katse

Vooluga juhtme magnetväljas pöördub magnetnõel juhtmega risti (Oerstedi katse).

Paralleelsete juhtmete vahel mõjuva jõu suund.

Kui paralleelsetes juhtmetes kulgevad samasuunalised voolud, siis mõjub juhtmete vahel tõmbejõud. Vastassuunaliste voolude korral mõjub tõukejõud.

Paralleelsete juhtmete vahel mõjuva jõu suurus

Kahe paralleelse sirgjuhtme vahel mõjuv jõud on võrdeline juhtmete pikkusega ning voolutugevustega juhtmetes. See jõud on ka pöördvõrdeline juhtmete vahelise kaugusega. Võrdeteguri väärtus on vaakumi korral 2·10–7

Kontrollküsimused
Milline põhimõtteline erinevus on elektrostaatilistel ja magnetilistel jõududel?
Kuidas muudab magnetjõud peenest ja venivast traadist valmistatud vooluga juhtmeringi mõõtmeid? Juhtme soojuspaisumist mitte arvestada.
Vooluallika klemmide külge ühendatud elastne juhe on pandud ümber vooluallikast kaugel paikneva posti ning vooluallika postist eemaldamise teel sirgu tõmmatud. Mitu korda muutub selle juhtme kahe osa vahel mõjuv jõud voolutugevuse kahekordsel suurendamisel?
KontrollküsimusedLisamaterjalid
Elektrivälja tugevus ja magnetinduktsioon
Elektrivälja tugevus
Välja olemasolust saab teada vaid selle tekitatud jõu kaudu.

Aine ja tema olekute kirjeldamiseks kasutatakse mitmesuguseid füüsikalisi suurusi, millest mõned on meile ka juba põhikoolist tuttavad. Välja võib samuti kirjeldada mingi suuruse abil. Kuna välja olemasolu tuleb esile jõu kaudu, siis on mõistlik elektri- ja magnetvälja iseloomustada jõuga, mis mõjub selles väljas mingile kindlale kehale.

Jõud , millega ühe punktlaengu poolt tekitatav elektriväli mõjutab teist punktlaengut , sõltub Coulomb’i seaduse (valemi 1.3 )

kohaselt mõlema laengu suurusest. Seega ei sobi jõud kirjeldama elektrivälja, mida tekitab esimene punktlaeng . Elektrivälja iseloomustava suuruse väärtused ei tohi ju sõltuda vahendist (proovikehast laenguga ), mida me kasutame välja olemasolu tuvastamiseks. Kui me jagame proovikehale mõjuva jõu selle keha laenguga , siis saame suuruse, mis tõepoolest ei sõltu enam laengust . See ongi esimese keha poolt tekitatava elektrivälja tugevus

(1.10)

Elektrivälja tugevus näitab, kui suur jõud mõjub selles väljas ühikulise positiivse laenguga kehale. Väljatugevus on vektoriaalne (suunda omav) suurus. Seetõttu võib väljatugevust lühidalt nimetada ka E-vektoriks. Edaspidi teeme nii eelkõige siis, kui soovime rõhutada väljatugevuse vektoriaalsust. Kui aga jutt on E-vektori pikkusest (moodulist), siis ütleme lihtsalt väljatugevus . Topeltindeksiga jõu tähises rõhutame, et tegemist on jõuga, mis mõjub esimese keha poolt teisele kehale.

E-vektori kokkuleppelise suuna määrab elektrivälja tugevuse definitsioonis sisalduv sõna positiivne. Kuna kahe positiivselt laetud keha vahel mõjub tõukejõud, siis on positiivse laenguga keha poolt tekitatud elektrivälja tugevus vektorina suunatud sellest kehast eemale. Me võiksime valemis 1.10 kasutada vektorimärke, sest proovikeha laengu  positiivsuse tõttu on jõud ja väljatugevus vektoritena samasuunalised. Negatiivse laenguga keha mõjutab positiivset proovilaengut tõmbejõuga, mistõttu vastav elektrivälja tugevus on vektorina suunatud negatiivse laenguga keha poole.

Üldiselt tuleb vektoriaalsete suuruste tähiseid käesoleva õpiku valemites siiski mõista kui vastavate vektorite pikkusi. Pikkuse negatiivsus tähendab aga seda, et vektor on suunatud vastupidiselt kokkuleppelisele positiivsele suunale. Näiteks on jõud ja väljatugevus negatiivse laenguga väljatekitaja korral valemis 1.10 mõlemad negatiivsed. Valemite lihtsuse nimel hoidume vektorimärkide kasutamisest.

Valemi 1.10  põhjal on elektrivälja tugevuse ühikuks üks njuuton kuloni kohta (). Üks njuuton kuloni kohta on sellise elektrivälja tugevus, milles punktlaengule suurusega mõjub jõud . Praktikas see esitus eriti kasutamist ei leia. Rohkem on levinud sama mõõtühiku teine esitusviis - üks volt meetri kohta (). Sellega tutvume lähemalt punktis 1.6.

Elektrivälja tugevuse kohta toodud mõned näited tabelis 1.2.

Tabel 1.2

Väli

Väljatugevus
(N/C või V/m)

põleva elektrilambi hõõgniidis

400 – 600

õhus vahetult enne välgulööki

kuni 5·105

sädeme tekkimisel kuivas õhus (sõltub sädeme pikkusest)

3·106

elusa raku membraanis
(puhkeseisundis)

2·107

vesiniku aatomissse kuuluva elektroni asukohas

5·1011

Edaspidi tuleb meil korduvalt väljatugevuse kaudu leida kehale laenguga selles väljas mõjuvat elektrijõudu  . Valemi 1.10  põhjal

jõud on laengu ja väljatugevuse korrutis. Indekseid me enam ei kasuta, sest valemis 1.11  sisalduv väljatugevus ei pruugi enam olla põhjustatud konkreetsest punktlaengust ega üldse mingist ühest kindlast kehast. See on enamasti paljude eri väljade tugevuste summa.

Eespool veendusime selles, et laeng täidab Coulomb’i seaduses sama rolli mida mass gravitatsiooniseaduses. Võrdlemist jätkates võiksime küsida, milline Mehaanika kursusest tuntud suurus vastab elektrivälja tugevusele . Pole kuigi raske märgata, et selleks suuruseks on raskuskiirendus . Raskuskiirendus näitab, kui suur raskusjõud  mõjub ühikulise massiga kehale. Analoogiliselt näitab elektrivälja tugevus meile, kui suur elektrijõud mõjub selles väljas ühikulise laenguga kehale.

Magnetinduktsioon
Suvalise päritoluga magnetvälja avastamiseks saame kasutada vooluga juhet.

Kui uurime katseliselt vooluga juhtme käitumist mitte ainult teise juhtme magnetväljas (p.1.4.2) vaid suvalise päritoluga väljas, siis võime järeldada, et juhtmelõigule mõjuv magnetjõud on alati võrdeline juhet läbiva voolu tugevusega , juhtmelõigu pikkusega ja siinusega nurgast voolu suuna ning magnetvälja suuna vahel (J.1.20)

kus  on võrdetegur. Meenutagem siinkohal, et magnetvälja suuna määrab selles väljas orienteerunud magnetnõel. Peagi veendume, et seos 1.12 on Ampère’i poolt tuletatud valemi 1.7 üldistus, mis arvestab ka magnetvälja suunda ja ei eelda enam magnetvälja tekitajana vooluga juhet. Seetõttu nimetatakse valemit 1.12 sageli Ampère’i seaduseks, ehkki Ampère ise kasutas kuju 1.7 .

Jõu suuna määramiseks Ampère’i seaduses võib kasutada vasaku käe reeglit. See väidab, et kui vasaku käe väljasirutatud sõrmed osutavad voolu suunda ja magnetväli on suunatud peopessa, siis väljasirutatud pöial näitab juhtmelõigule mõjuva jõu suunda (J.1.20). Vooluga juhtmele mõjuv magnetjõud on suunatud alati risti nii voolu kui ka magnetvälja suunaga. Nüüd märkame, et meil on mõtet avaldada valemist 1.12  võrdetegur , tehes seda juhul, kui magnetväli on voolu suunaga risti ( ja ). Me saame, et

(1.13)

suurus näitab uuritavas magnetväljas mingile kindlale kehale (vooluga juhtmele) mõjuvat jõudu. Seega on ta sobiv kasutamiseks magnetvälja iseloomustava suurusena. Suurust on hakatud nimetama magnetinduktsiooniks.

Magnetinduktsioon näitab magnetjõudu , mis mõjub ühikulise vooluga ja ühikulise pikkusega juhtmelõigule selle juhtmega ristuvas magnetväljas.

Magnetinduktsioon on vektoriaalne suurus ja tema suunda näitab magnetväljas orienteerunud magnetnõela põhjapoolus  (J.1.20).

Kuna magnetinduktsiooni üldlevinud tähiseks on , siis võib teda lühidalt nimetada ka B-vektoriks. Pole raske märgata, et B-vektor on analoogiline elektrivälja kirjeldava E-vektoriga. Mõlemad on defineeritud jõu kaudu, mis mõjub proovikehale. Erinevus on vaid selles, et E-vektori suund ühtib laetud proovikehale mõjuva jõu mõjumise sihiga, B-vektor on aga proovijuhtmele mõjuva jõu suunaga risti. Viimane asjaolu muudab täiesti võimatuks vektorimärkide kasutamise valemites 1.12 ja 1.13 . Allpool (p.1.5.4) saab ka selgemaks, miks B-vektori pikkuse defineerimisel kasutatakse vooluga juhet, suuna määramisel aga püsimagnetit.

Magnetinduktsiooni SI-ühikut nimetatakse horvaadi päritoluga Ameerika elektrotehniku ja leiutaja Nikola Tesla (1856 – 1943) järgi teslaks. Kui juhtmele, mille pikkus on üks meeter ja milles kulgeb vool tugevusega üks amper, mõjub selle juhtmega ristuva magnetvälja poolt jõud üks njuuton, siis on välja magnetinduktsioon üks tesla (1 T) (J.1.21).

Seega valemi 1.13  kohaselt

Üks tesla on väga suur magnetinduktsioon. Seetõttu mõõdetakse Maal esinevate magnetväljade induktsioone tavaliselt milli- ja mikroteslades. Keskmise suurusega püsimagneti pinna lähedal on magnetinduktsioon mõnikümmend milliteslat. Tabelis 1.3 on toodud veel mõned näited magnetinduktsiooni väärtuste kohta.

Tabel 1.3.

Magnetinduktsioon

 

Maa pinnal

10–5 T

Päikese pinnal

10–3 T

Telerite jt elektroonikaseadmete toitetrafo südamikus

0,1 − 1 T

Ülijuhtiva elektromagneti südamikus

10 - 50 T

Kosmoses, neutronitest koosneval tähel

108 T

Punktlaengu väljatugevus ja sirgvoolu magnetinduktsioon

Coulomb’i seaduse 1.3 ja valemi 1.10 abil saame punktlaengu elektrostaatilise välja tugevuse esitada kujul

Seega on punktlaengu väljatugevus võrdeline selle laengu suurusega ning pöördvõrdeline laengu ja uuritava punkti vahekauguse ruuduga.

Teades Oerstedi katse kirjelduse (p.1.4.2) põhjal seda, kuidas on suunatud sirgvoolu magnetväli, võime nüüd omavahel seostada Ampère’i seaduse kaks kuju (1.7 ja 1.12) ning ühtlasi avaldada vooluga sirgjuhtme poolt tekitatava magnetinduktsiooni. Kahe paralleelse juhtme korral on ühe juhtme magnetväli teise juhtmega risti (J.1.22).

Seega nurk   on täisnurk ja . Vas­tavalt avaldub esimese juhtme poolt teisele mõjuv jõud kujul

kus  on esimese juhtme magnetinduktsioon teise juhtme asukohas ja on voolutugevus teises juhtmes. Kuna jõud avaldub samas ka valemiga 1.7

siis saame

Vooluga sirgjuhtme poolt tekitatav magnetinduktsioon on võrdeline voolutugevusega juhtmes ning pöördvõrdeline kaugusega juhtmest. Valemi 1.15 juures tuleb arvestada, et on selle juhtmelõigu pikkus, millele vaadeldav jõud mõjub. Vaikimisi eeldatakse magnetinduktsiooni tekitava (joonisel vasakpoolse) juhtme lõpmatut pikkust.

Näide 1.4.

Leiame magnetinduktsiooni, mida tekitab näites 1.3 käsitletud õhuliini üks juhe teise asukohas. Juhtmete vahekaugus on ja neis kulgeb vool TeX parse error: Undefined control sequence \textA.

Lahendus

Andmed


Arvutused

Valem 1.15 annab

,

kus

Arvutades saame

Vastus: Üks juhe tekitab teise asukohas magnetinduktsiooni 20 mikroteslat.

Nii elektri- kui magnetväljas kehtib superpositsiooniprintsiip ehk liitumise põhimõte. Selle printsiibi kohaselt võrdub elektrivälja korral laetud kehade süsteemi väljatugevus üksikutest kehadest põhjustatud väljatugevuste vektoriaalse summaga. Magnetväljas võrdub väljatekitajate (püsimagnetite või vooluga juhtmete) süsteemi magnetinduktsioon üksikutest väljatekitajatest põhjustatud magnetinduktsioonide vektoriaalse summaga. Veel lihtsamalt öeldes: nii E-vektoreid kui B-vektoreid tuleb vektoriaalselt liita.

Superpositsiooniprintsiip tuleneb otseselt välja omadusest mitte segada teist välja ehk siis Füüsikalise looduskäsitluse aluste kursuses vaadeldud tõrjutusprintsiibist. Täpsemalt tuleneb see küll tõrjutusprintsiibi mittekehtivusest väljade korral. Kui mingile kehale mõjub korraga mitu välja, siis liituvad vektoriaalselt nendest väljadest tingitud jõud. Piltlikult öeldes: väljad ei lähe omavahel konflikti. Nad jagavad omavahel ära võimaluse vaadeldavat keha jõuga mõjutada. Lõpptulemuses kajastub aga loomulikult rohkem selle välja mõju, mis ise on tugevam. Konkreetselt uurime superpositsiooniprintsiibi rakendamist punktis 1.6.

Elektri- ja magnetvälja omaduste võrdlus
Punktlaengu ja vooluga juhtme poolt tekitatud väljade ning neile mõjuvate elektri- ja magnetjõudude mõistmine ennavad võtme elektromagnetnähtuste kirevasse maailma.

Elektri- ja magnetvälja kirjeldused tunduvad esmapilgul üksjagu erinevat. E-vektori suund ühtib laetud proovikehale mõjuva jõu mõjumise sihiga, B-vektor on aga proovijuhtmele mõjuva jõu suunaga risti. Punktlaengu elektrivälja tugevus (E-vektori pikkus) on pöördvõrdeline vahekauguse  ruuduga välja tekitava punktlaengu ja uuritava väljapunkti vahel (valem 1.14). Lõpmata pika sirgjuhtme magnetinduktsioon (B-vektori pikkus) on aga pöördvõrdeline selle kaugusega esimeses astmes (valem 1.15). Need erinevused tulenevad looduse objektiivsest omadusest. Magnetväljal lihtsalt on kaks erinevat tekitajat: laetud osakeste suunatud liikumine (elektrivool) ja osakeste omamagnetväli, mis põhjustab püsimagneti välja. Kui magnetvälja kirjeldav suurus oleks defineeritud lähtuvalt vaid ühest välja tekitajast, siis oleks teise tekitajaga seotud nähtuste kirjeldamine ääretult raske. Seetõttu on tänapäeval B-vektori pikkus määratud vooluga juhtme, suund aga püsimagneti (magnetnõela) abil.

Magnetvälja algne kirjeldus ehitati üles sarnasusele punktlaengute ja magnetpooluste käitumise vahel. Magnetismi tehnilised rakendused aga osutusid üha rohkem seotuks elektrivooluga, mistõttu elektriliseks põhiühikuks valiti amper ja B-vektori pikkus defineeriti süsteemis SI vooluga juhtmele mõjuva jõu kaudu. See tingis magnetvälja silindrilise sümmeetria: kõigis vooluga juhtmest (kui silindri teljest) ühesugusel kaugusel paiknevates punktides on sama magnetinduktsioon. Seevastu punktlaengu elektrivälja sümmeetria on sfääriline: kõigis punktlaengust (kui sfääri tsentrist) ühesugusel kaugusel asuvates punktides on sama elektrivälja tugevus. Sfääri pindala () on võrdeline raadiuse ruuduga, silindri külgpindala () on aga võrdeline raadiusega esimeses astmes.

Elektri- ja magnetvälja võrdlev tabel

Homogeenset välja ning elektri- ja magnetvälja jõujooni uurime lähemalt allpool (p.1.6). Olgu veel märgitud, et suur kõlaline erinevus välja jõu kaudu kirjeldavate vektorsuuruste nimetustes (elektrivälja tugevus E ja magnetinduktsioon B) tuleneb samuti asjaolust, et magnetvälja algne kirjeldus ehitati üles sarnasusele punktlaengute ja magnetpooluste käitumise vahel. Magnetvälja tugevuseks nimetatakse suurust, mis on elektrivälja tugevuse analoogiks magnetpooluste-põhises magnetvälja käsitluses. Kuna see käsitlus ei ole kooskõlas tänapäeval domineeriva ühikusüsteemiga SI, siis me seda lähemalt ei vaatle.

Kokkuvõte

Elektrivälja tugevus

Elektrivälja tugevus näitab, kui suur jõud mõjub selles väljas ühikulise positiivse laenguga kehale.

Elektrivälja tugevuse suund

Elektrivälja tugevus on vektoriaalne suurus ja seda võib nimetada ka E-vektoriks. E-vektori suund ühtib positiivse laenguga kehale mõjuva jõu suunaga.

Vooluga juhtmele mõjuv jõud

Vooluga juhtmele mõjuv jõud on võrdeline juhet läbiva voolu tugevusega , juhtme pikkusega ning siinusega nurgast voolu suuna ja magnetvälja suuna vahel  (Ampère’i seadus):

Vasaku käe reegel

Kui vasaku käe väljasirutatud sõrmed osutavad voolu suunda ja magnetväli on suunatud peopessa, siis väljasirutatud pöial näitab juhtmelõigule mõjuva jõu suunda (vasaku käe reegel).

Magnetjõu suund

Magnetjõud on suunatud alati risti nii voolu kui ka magnetvälja suunaga.

Magnetinduktsioon

Magnetinduktsioon näitab jõudu, mis mõjub ühikulise vooluga ja ühikulise pikkusega juhtmele selle juhtmega ristuvas magnetväljas.

Magnetinduktsiooni suund

Magnetinduktsioon on vektoriaalne suurus ja seda võib nimetada ka B-vektoriks. B-vektori suunda näitab magnetväljas orienteerunud magnetnõela põhjapoolus.

Magnetinduktsiooni ühik

Kui juhtmele, mille pikkus on 1 m ja milles kulgeb vool tugevusega 1 A, mõjub selle juhtmega ristuva magnetvälja poolt jõud 1 N, siis on välja magnetinduktsioon üks tesla (1 T).

Superpositsioon elektriliselt ja magnetiliselt aktiivsete kehade süsteemis

Elektriliselt või magnetiliselt aktiivsete kehade süsteemi korral tuleb vastavalt E- või B-vektori pikkuse leidmiseks üksikute väljatekitajate E- või B-vektoreid liita (superpositsiooniprintsiip).

Kontrollküsimused
Reastage mõisted elektriväli, elektromagnetväli ja elektrostaatiline väli nende üldisuse järjekorras. Mis on mille alaliigiks?
Oletagem, et Kuud hoiab Maa ümber tiirlemas elektrijõud (ül 3, p.1.3). Milline peaks siis olema meile mõjuva Maa elektrivälja tugevus? Maa laengut võib vaadelda koondununa Maa keskpunkti. Maa raadiuseks loeme 6370 km.
Vaatleme sirgjuhet, mis mingis punktis pöördub täisnurga all paremale. Millise suunaga magnetvälja tekitab pöördepunktile eelnev juhtmeosa pöördepunktile järgneva osa asukohas?
Vaatleme sama sirgjuhet, mis eelmises ülesandes. Millise suunaga magnetvälja tekitab pöördepunktile järgnev juhtmeosa pöördepunktile eelneva osa asukohas?
Kas samas tasandis täisnurga all suunda muutva juhtme kaks teineteise suhtes ristuvat osa mõjutavad teineteist magnetjõuga? Kui jah, siis kuidas on see jõud suunatud?
Kuidas muudaks magnetjõud eelmises probleemis kirjeldatud juhtme kuju, kui juhe oleks piisavalt elastne?
Milline suurus vastab elektrivälja tugevusele E magnetvälja puhul?
Vaakumkambris on kaks erinimeliselt laetud horisontaalset (ja üksteisega paralleelset) plaati, mis on üleval ja all. Vaakumis on veel lisaks ka magnetväli, mis on suunatud vasakult paremale, paraleelselt plaatidega. Otsesuunas (risti magnetväljaga ja paralleelselt laetud plaatidega) siseneb kambrisse elektron ja lendab läbi ilma suunda muutmata. Kuidas käitub talle sama teed pidi järgnev sama algkiirusega alfaosake?
Vaakumkambris on 2 erinimeliselt laetud paralleelset plaati, positiivselt laetud on üleval, negatiivselt laetud on all. Plaatide vahele lendab positiivselt laetud osake, mille kiirus on plaatidega paralleelne. Plaatide vahel on ka magnetväli. Kuhu poole peab olema magnetväli suunatud, et osake lendaks mööda sirget trajektroori?
Millest ei sõltu punktlaengu tekitatud elektriväli?
Milline nendest ühikutset ei sobi elektrivälja ühikuks?
Leiame magnetinduktsiooni, mida tekitab näites 1.3 käsitletud õhuliini üks juhe teise asukohas. Juhtmete vahekaugus on 1m ja neis kulgeb vool 100A.
Millised kolm punktlaengut võrdkülgse kolmnurga tippudes tekitavad elektrivälja, mille tugevus kolmnurga keskel (punktis P) on null?
Mida tähendab superpositsiooniprintsiip elektrivälja ja magnetvälja puhul?
Kaks ühesugust punktlaengut q = 2 nC asuvad teineteisest 1 m kaugusel . Kui suur on elektrivälja tugevus laengutevahelise kauguse keskpunktis?
Millised kolm punktlaengut võrdkülgse kolmnurga tippudes tekitavad elektrivälja, mille tugevus kolmnurga keskel (punktis P) on null?
Kuidas sõltub punktlaengu elektrivälja tugevus kaugusest punktist?
Kuidas sõltub sirgvoolu magnetvälja induktsioon kaugusest juhtmest?
Leiame magnetinduktsiooni, mida tekitab näites 1.3 käsitletud õhuliini üks juhe teise asukohas. Juhtmete vahekaugus on 1 m ja neis kulgeb vool 100 A.
Kaks võrdse suurusega laengut asetsevad teineteisest teatud kaugusel. Kummal juhul on valjatugevus neid ühendava sirglõigu keskpunktis suurem – kas siis, kui laengud on samanimelised, või siis, kui nad on erinimelised?
Mida tuleks teha, et muuta elektromagneti poolused vastupidisteks?
Juhe asub 20 cm pikkuselt magnetväljas. Juhet läbib vooltugevusega 100 A ning nurk välja voolu suuna vahel on 30 kraadi. Kui suur on magnetvälja induktsioon, kui juhtmele mõjub jõud 10 N?
Kui suure jõuga mõjub magnetväli, mille magnetiline induktsioon on 10 mT, juhtmele, kui magnetväljas asuva juhtmeosa pikkus on 0,1 m ja voolutugevus juhtmes on 50 A? Vool ja väli on omavahel risti.
Kahe peenikese niidi otsas ripub horisontaalselt varras pikkusega L ja massiga m. Varras asub homogeenses magnetväljas induktsiooniga B ning suund on ülevalt alla. Missuguse nurga võrra kalduvad niidid, kui lasta vardast läbi vool i?
KontrollküsimusedLisamaterjalid
Väljade visualiseerimine
Elektrivälja jõujooned
J.1.23 Elektrivälja jõujoon on mõtteline joon, mille igas punktis on E-vektor suunatud piki selle joone puutujat

Elektri- ja magnetväli pole meie meeleorganitega vahetult tajutavad. Välja olemasolu avaldub vaid tema mõjus aine osakestele. Samas võib aga korraldada katseid, milles väikesed ainekübemed moodustavad E- või B-vektoriga paralleelseid jooni. Neid jooni on hakatud nimetama vastava vektori joonteks või vastava välja jõujoonteks. Jõujooned võimaldavad meil tekitada vahetult nähtavaid välja mudeleid. Teisisõnu – nad võimaldavad elektri- või magnetvälja visualiseerida. Ei tohi unustada, et jõujooni looduses tegelikult pole. Nad on vaid inimeste poolt välja mõeldud abivahend välja kirjeldamisel. Magnetvälja jõujoontest oli juttu juba põhikooli Elektriõpetuses, kuna nende katseline uurimine on tehniliselt hulga lihtsam. Meie aga alustame elektrivälja jõujoontest.

Elektrivälja jõujoon on mõtteline joon, mille igas punktis on E-vektor suunatud piki selle joone puutujat. E-vektori suund määrab ka jõujoone suuna, mida markeeritakse noolekesega jõujoonel (J.1.23). Jõujoone üldlevinud tähiseks joonistel ongi noolekesega katkendjoon, mille läheduses paikneb viide konkreetse välja vektorile (täht E või B). Seal, kus väli on tugevam, paiknevad jõujooned tihedamalt. See võimaldab võrrelda väljatugevusi ruumi eri osades.

Kui punktlaengu läheduses ei leidu teisi laetud kehi, siis täidab seda ruumi vaid punktlaengu enda elektriväli. Positiivse punktlaengu E-vektor on suunatud laengust eemale ja negatiivse punktlaengu E-vektor laengu poole (J.1.24). Niisiis väljuvad positiivse punktlaengu elektrivälja jõujooned laengu asukohast nagu päikesekiired. Negatiivse punktlaengu välja jõujooned aga tulevad laengu asukohta kokku.

Sageli väidetakse, et positiivselt laetud keha elektrivälja jõujooned lähevad kehalt lõpmatusse ning negatiivse laenguga keha välja jõujooned tulevad lõpmatusest. Päris nii see siiski ei ole. Laengu jäävuse seaduse (p.1.2.4) põhjal teame, et kui on olemas positiivne, siis peab kuskil olema ka negatiivne laeng. Positiivse laenguga kehalt väljuvad elektrivälja jõujooned kulgevad kindlasti mingitele negatiivsetele laengutele. Kui negatiivse laenguga kehad on väga kaugel, siis nende olemasolu positiivselt laetud keha läheduses tunda ei ole ning punktlaengu elektrivälja jõujoonte pilt on tsentraalsümmeetriline.

Kahe või enama punktlaengu või muu laetud keha piisavalt väikese vahekauguse korral liituvad superpositsiooniprintsiibi kohaselt nende kehade poolt tekitatud elektriväljade E-vektorid. Summaarse elektrivälja ehk resultantvälja E-vektori leidmise näitena vaatleme kahest ühesuurusest, kuid erinimelisest punktlaengust koosnevat süsteemi (J.1.25). Positiivse punktlaengu väljatugevus on joonisel negatiivse laengu väljatugevusest suurem seetõttu, et vaadeldav punkt paikneb laengule lähemal kui laengule . Liites analoogiliselt E-vektoreid teistes punktides, saame resultantvälja jõujoonte täieliku pildi. Näiteid erinevate kehade ja nende süsteemide elektrivälja jõujoonte konstrueerimisest võib leida veebiõpikust.

Neid elektrivälja jõujoonte pilte saab ka katseliselt kontrollida, kasutades tahke aine kübemeid, mis paiknevad vedelas dielektrikus. Suurepäraselt sobivad selleks mannaterad õlis. Mannaterad asetuvad elektriväljas piki jõujooni ridadesse. 

Veelgi lihtsam võimalus erinevaid situatsioone läbi mängida on arvutisimulatsioonid.

Homogeenne elektriväli

Eemaldumisel punktlaengust väheneb punktlaengu väljatugevus valemi 1.14 kohaselt niisamuti nagu kooskõlas Mehaanika kursuses õpituga väheneb raskuskiirendus eemal­dumisel Maast. Maapinnal asetsevad kehad on aga kõik ligikaudu ühesugusel kaugusel Maa keskpunktist. Seetõttu võib raskuskiirenduse väärtust Maa pinnal lugeda konstantseks. Jättes Maa pinna kõveruse arvestamata, võime lugeda muutumatuks ka raskuskiirenduse suuna. Raskusjõu välja nimetatakse sel juhul homogeenseks (kr homogenes - ühtlane, ühesugune).

Ka elektriväli võib olla homogeenne. Homogeense välja E-vektor on kogu vaadeldavas ruumis ühesuguse pikkuse ja suunaga ning välja jõujooned on omavahel paralleelsed sirged, mille vahekaugus ei muutu.

Elektriväli on homogeenne näiteks kahe paralleelse ühtlaselt laetud tasase plaadi vahel, mille pinnaühikul paiknevad suuruselt võrdsed ja vastandmärgilised laengud, plaatide vahekaugus on tühiselt väike võrreldes plaatide joonmõõtmetega ja uuritav piirkond asub piisavalt kaugel plaadi äärest (ääre mõju ei avaldu, J.1.27). Selline elektriväli tekib plaatkondensaatoris, millega tutvume lähemalt allpool (p.2.6.3). Katseline elektrivälja jõujoonte pilt kondensaatoris on joonisel 1.28 (selle saamist kirjeldav video on leitav veebiõpikust). Plaatkondensaatoris tekkivat elektrivälja tasub detailsemalt uurida põhjusel, et kondensaator on üks tähtsamatest elektrostaatika rakendustest.

Mannateradest moodustuvate ridade omavaheline paralleelsus ja ridade keskeltläbi konstantne vahekaugus näitavad, et elektriväli kahe ühtlaselt laetud plaadi vahel on homogeenne. Samas näeme ka, et väljaspool plaatidevahelist ruumi mannaterade reastumist ei toimu. Seega puudub seal elektriväli. Kui ühe plaadi mingil pinnaosal paikneva positiivse laengu jaoks asetseb sama suur negatiivne laeng vahetus läheduses naaberplaadi sama suurel pinnaosal, siis moodustavad need kaks laengut tervikuna neutraalse süsteemi, mis süsteemist väljapoole ulatuvat elektrivälja ei tekita. Piltlikult öeldes: iga pluss on juba “oma” miinuse leidnud ja “lisa otsida” pole enam vaja. “Miinuse otsimist” ehk positiivse laengu ülehulka süsteemis väljendaks selles näites süsteemist väljapoole suunduv jõujoon, mida me aga katses ei tuvasta.

Magnetvälja jõujooned
J.1.29 Rauapuru osakeste asetumine piki magnetvälja jõujoont.

Analoogiliselt elektrivälja jõujoontega kasutatakse ka magnetvälja kirjeldamiseks jõujooni. Magnetvälja jõujoon on mõtteline joon, mille igas punktis on B-vektor suunatud piki selle joone puutujat (analoogiliselt joonisega 1.23). Jõujoonel on ka suund, mis ühtib B-vektori suunaga antud punktis ja mida järelikult näitab orienteerunud magnetnõela põhjapoolus. Seega on võimalik magnetvälja jõujoonte kuju uurida piisavalt suure hulga magnetnõelte abil. Veel paremini saab jõujoonte paigutust nähtavaks muuta rauapuruga. Rauapuru kübemed käituvad magnetväljas nagu väikesed magnetnõelad. Nad pöörduvad oma pikima mõõtmega magnetvälja suunas, üritades püsimagnetite kombel moodustada ahelaid, milles ühe tükikese põhjapoolus on tõmbunud vastu teise lõunapoolust (J.1.29). Sellised ahelad kujutavadki magnetvälja jõujooni.

Ka magnetvälja korral võimaldavad jõujooned võrdlevalt hinnata väljavektori pikkust ruumi eri piirkondades. Seal, kus jõujooned paiknevad tihedamalt, näiteks püsimagneti ühe pooluse läheduses (J.1.30), on magnetinduktsioon suurem ja proovikehale mõjuvad tugevamad magnetjõud.

J.1.30 Püsimagneti pooluse läheduses on magnetväli tugevam ja jõujooned paiknevad seal tihedamalt.

Korraldades Oerstedi katse (p.1.4.2) vertikaalse sirgjuhtme abil, millest ühesugusel kaugusel horisontaalsel alusplaadil paikneb suur hulk magnetnõelu, võime veenduda selles, et magnetvälja jõujooned ümbritsevad vooluga juhet kontsentriliste ringjoontena. Välja suuna määramiseks jõujoonel kasutatakse mitmeid mnemotehnilisi võtteid, millest levinuimaks on tänapäeval parema käe rusikareegel (J.1.31). See väidab, et kui rusikasse tõmmatud parema käe väljasirutatud pöial näitab voolu suunda, siis neli kõverdatud sõrme näitavad selle voolu magnetvälja suunda.

Ka magnetinduktsiooni kohta kehtib superpositsiooniprintsiip ehk liitumise põhimõte. Selle järgi on kehade süsteemi poolt tekitatud magnetvälja B-vektor võrdne üksikute kehade B-vektorite summaga. Ehk teisiti: erinevate kehade poolt mingis punktis tekitatud magnetväljade B-vektoreid tuleb resultantvälja B-vektori saamiseks liita. Seda põhimõtet illustreerib hästi ringvoolu magnetvälja jõujoonte määramine (J.1.32).

Parema käe rusikareeglit rakendades veendume selles, et vooluga ringjuhtme kõik osad tekitavad ringi keskpunktis piki ringjuhtme telge suunatud magnetvälju. Ringjuhtme teljel on resultantväli just ringvoolu keskpunktis kõige tugevam, sest keskpunkt on kõigile ringjuhtme osadele lähim telje punkt ning just keskpunktis on kõigi ringjuhtme osade magnetväljad omavahel paralleelsed. Näeme, et ringvoolu magnetvälja jõujooned ei ole ise küll rangelt ringjoonelised, kuid nad on siiski kinnised kõverad.

Ringvoolu magnetvälja suuna määramiseks võib samuti kasutada parema käe rusikareeglit, mis nüüd kõlab järgmiselt: kui rusikasse tõmmatud parema käe neli kõverdatud sõrme näitavad ringvoolu suunda mingis juhtmekeerus, siis väljasirutatud pöial näitab selle voolu magnetvälja suunda juhtmekeeru teljel. Seega tuleb üleminekul sirgvoolu magnetvälja juurest ringvoolu magnetvälja käsitlemisele parema käe rusikareeglis sõnad vool ja magnetväli omavahel ära vahetada. Ringjuhtme magnetvälja jõujoonte katseline pilt on leitav veebiõpikust.

Homogeenne magnetväli
J.1.33 Solenoidis liituvad paljude ringvoolude samasuunalised magnetväljad.

Kõrvutiasetsevatest keerdudest koosneva juhtmepooli ehk solenoidi korral liituvad solenoidi teljel paljude ringvoolude samasuunalised magnetväljad. Seetõttu on resultantväli solenoidi sees väga tugev (J.1.33). Vooluga solenoidi magnetvälja jõujoonte katseline pilt on joonisel 1.34.

Rauapuru kübemed moodustavad vooluga solenoidi sees solenoidi teljega paralleelseid ja ühtlase tihedusega ridu. Seega on magnetväli vooluga solenoidi sees homogeenne. Jõujoonte hajumine solenoidi otste juures näitab, et seal magnetväli mõnevõrra nõrgeneb. Samas puudub magnetväli väljaspool solenoidi (solenoidi kõrval) pea täiesti, sest mitte mingit rauapuru reastumist me seal ei tähelda. Olukord on analoogiline elektrivälja puudumisega väljaspool plaatkondensaatorit (p.1.6.2).

Mõistagi sõltub magnetvälja suund solenoidis voolu suunast ja on määratav parema käe rusikareegli abil, analoogiliselt ringjuhtme välja juhuga. Vooluga solenoidis tekkivat homogeenset magnetvälja tasub detailsemalt uurida põhjusel, et solenoid on üks tähtsamatest magnetismi rakendustest. Me puutume sellega veel korduvalt kokku käesoleva õpiku 2. osas.

Näeme, et püsimagneti magnetvälja jõujooned kulgevad ka väljaspool magnetit pooluselt poolusele. Läbides ka magnetit ennast, moodustavad nad ikkagi kinnisi kontuure, niisamuti nagu voolujuhtmete puhul. Seega ei ole olemas punkte, kus magnetvälja jõujooned algaksid või lõpeksid.

Välja, mille jõujooned on kinnised (alguse ja lõputa), nimetatakse solenoidaalseks väljaks ehk pöörisväljaks. Seega magnetväli on pöörisväli.

Kokkuvõte

Elektrivälja jõujoon

Elektrivälja jõujoon on mõtteline joon, mille igas punktis on E-vektor suunatud piki selle joone puutujat.

Magnetvälja jõujoon

Magnetvälja jõujoon on mõtteline joon, mille igas punktis on B-vektor suunatud piki selle joone puutujat.

Homogeenne väli

Homogeenseks nimetatakse välja, mille jõujooned on omavahel paralleelsed ja konstantse tihedusega (naaberjoonte vahekaugusega).

Parema käe rusikareegel

Kui rusikasse tõmmatud parema käe väljasirutatud pöial näitab voolu suunda, siis neli kõverdatud sõrme näitavad selle voolu magnetvälja suunda (parema käe rusikareegel).

Solenoid

Solenoidiks nimetatakse kõrvutiasetsevatest keerdudest koosnevat juhtmepooli. Vooluga solenoidis tekib homogeenne magnetväli.

Magnetväli kui pöörisväli

Magnetvälja jõujooned on alguse ja lõputa. Magnetväli on pöörisväli.

Kontrollküsimused
Kui Ampère’i kombel oletada, et püsimagneti magnetvälja põhjustavad väikesed ringvoolud, siis kuidas peaksid paiknema nende ringvoolude teljed?

Lahendus

Ja

Sirgjuhtme lõigule pikkusega 20 cm, milles kulgeb vool tugevusega 5 A, mõjub magnetvälja poolt jõud 0,2 N. Milline on välja magnetinduktsioon, kui juhtme kõrval paikneva kompassi nõel moodustab juhtmega nurga 30 kraadi?
1 m pikkuse vaskjuhtme otsad kinnitati lapiku patarei klemmide külge ning juhe jagati kaheks omavahel paralleelseks osaks, mis paiknesid 1 cm kaugusel teineteisest. Kui suur jõud mõjub juhtme kahe osa vahel, kui patarei tekitab juhtmes voolu tugevusega 4 A?
KontrollküsimusedLisamaterjalid
Elektrivälja potentsiaal ja pinge
Töö ja potentsiaalne energia elektriväljas
Üldiselt tähendab sõna pinge alati seda, et kohe võib midagi juhtuda.

Elektrivälja võib iseloomustada mitte ainult jõuga, mis temas mõjub ühikulise laenguga kehale, vaid ka tööga, mida see jõud võib ära teha. Juba põhikoolis õpitud suuruseks, mis kirjeldab elektrivälja töö kaudu, on pinge. Üldiselt tähendab sõna pinge alati seda, et kohe võib midagi juhtuda. Mõelgem siinkohal väljenditele pingeline olukord või suhted on pingestunud. Seal, kus on tegu elektrilise pingega, võib meie teele juba jääda silt: Kõrgepinge, elukardetav! Mis siis ikkagi on pinge?

Mehaanika kursusest teame, et tööks nimetatakse jõu ja selle mõjumise suunal sooritatud nihke korrutist. Kui keha sooritab jõu mõjul nihke , siis töö avaldub kujul

kus on nurk jõu ja nihke suundade vahel.

J.1.35 Massi m omava keha kukkumine raskusväljas. Kehale mõjub raskusjõud mg.

Asume uurima tööd, mida teeb kahe erinimeliselt laetud metallplaadi vahel esinev homogeenne elektriväli punktlaengu nihutamisel. Seejuures lähtume sarnasusest Maa raskusvälja ja homogeense elektrivälja vahel. Vaatleme müürilt kõrgusega alla pudenevat kivi massiga . Kivi kukub raskusväljas vaba langemise kiirendusega , sest talle mõjub raskusjõud (J.1.35).

Kivi langeb raskusjõu suunas. Järelikult töö valemis (1.18 ) ja . Maapinnale jõudmise hetkeks on kivi sooritanud nihke s ning raskusväli on seega teinud töö, mis on jõu ja sooritatud nihke (või kõrguse ) korrutis  .

Kivi võib lohistada või veeretada ka mööda horisontaalset maapinda. Raskusvälja tööd see aga ei mõjuta, sest jõud ei tee tööd liikumisel jõuga ristuvas sihis (valemis 1.18 ja ).

Laengut q omava keha liikumine homogeenses elektriväljas toimub samal viisil (J.1.36). Kehale mõjub elektrijõud  , mis on valemi (1.11 ) kohaselt esitatav laengu ja väljatugevuse korrutisena . Kui keha on sooritanud selle jõu suunalise nihke s (või läbinud pikkuse ) siis elektriväli on teinud töö , mis on jõu ja läbitud tee pikkuse korrutis: .

J.1.36 Laengut q omava keha liikumine homogeenses elektriväljas. Kehale mõjub elektrijõud qE.

Laetud keha võib samuti liikuda elektrijõuga ristuvas suunas. Elektrivälja tööd see aga ei mõjuta. Ei raskusväljas ega elektriväljas ei sõltu töö liikumistee ehk trajektoori kujust. Ta sõltub ainult jõujoone sihis läbitud pikkusest (vastavalt või ).

Välja, milles töö ei sõltu liikumistee kujust, nimetatakse potentsiaalseks väljaks, kuna tema kirjeldamisel võib kasutada potentsiaalse energia ja potentsiaali mõisteid. Potentsiaalne energia on tingitud keha vastastikmõjust teiste kehadega välja vahendusel. Kui keha asend võimaldab väljal teha keha nihutades tööd, siis on kehal potentsiaalne energia (ld potentis - suuteline, võimeline). Välja jõudude mõjul liikuva keha potentsiaalne energia kahaneb, sest töö varu kulutatakse ära.

J.1.37 Laengut q omava keha potentsiaalne energia kaugusel d nulltasemest.

Potentsiaalse energia nulltasemeks on loomulik valida keha niisugune asend, millest keha antud ülesande tingimustes enam välja jõudude mõjul edasi liikuda ei saa. Toodud näites on selleks negatiivselt laetud plaadi asukoht (J.1.37).

Raskusjõu väljas aga on potentsiaalse energia loomulikuks nulltasemeks maapind. Sealt ei ole enam võimalik edasi kukkuda ja raskusjõud rohkem tööd teha ei saa.

Kui kogu potentsiaalne energia liikumisel ära kulutatakse, siis on tema algväärtus võrdne välja poolt tehtud tööga. Raskusväljas kehtib seega Mehaanikast hästi tuntud valem . Punktlaengu potentsiaalne energia homogeen­ses elektriväljas avaldub vastavalt kujul

(1.19)

kus on punktlaengu kaugus energia nulltasemest või pikkus, mille laetud keha saab nulltasemeni liikudes läbida. Kuna indeksita tähistab elektrifüüsikas alati väljatugevust, siis hakkame edaspidi energia tähistamiseks kasutama E-tähte koos energia liigile viitava indeksiga (siin näiteks kujul ). Väljatugevuse tähisena toimiva E-tähe juures kasutame indekseid vaid erandjuhtudel, mil väljatugevuse ja energia segiajamine on välistatud.

Laengukandjad liiguvad sealt, kus nende potentsiaalne energia on suur, sellesse piirkonda, kus nende energia on väiksem.

Nagu näeme, sisaldab energia valem nii raskus- kui elektriväljas kõigepealt vaadeldavat keha iseloomustavat suurust ( või ), seejärel välja tugevuse kirjeldajat ( või ) ning lõpuks vaadeldava punkti kaugust energia nulltasemest ( või ).

Nüüd jääb üle vaid küsida, mis on sel kõigel pistmist kodus kasutatava elektrienergiaga. Kui kummaline see ka ei tundu, on seos siiski olemas. Elektriseadmetes liiguvad laengukandjad elektrivälja jõudude mõjul. Laengukandjad liiguvad sealt, kus nende potentsiaalne energia on suur, sellisesse piirkonda, kus energia on väiksem. Seejuures teeb elektriväli meile vajalikku tööd.

Näide 1.5.

Taskulambipirni hõõgniit on 6,5 mm pikkune ja elektrivälja tugevus temas on 700 N/C. Leiame, kui palju tööd teeb elektriväli laengukandjate nihutamisel hõõgniidis ühe tunni jooksul, kui voolutugevus lambis on 0,26 A.

Lahendus

Andmed




Arvutused:

Valemist 1.2 teame, et

Seega

ja

Vastus: Laengukandjate nihutamisel hõõgniidis teeb elektriväli ühe tunni jooksul töö .

Niisama suure töö teeb raskusväli näiteks juhul, kui keha massiga kukub alla 4,3 meetri kõrguselt, seega ligikaudu teise korruse aknast. Ilmselt ei sooviks keegi meist siis parajasti all olla.

Elektrivälja potentsiaal

Me jõudsime äsja järeldusele, et laetud keha liikumisel elektriväljas tehtav töö võib olla üks ja seesama liikumisel mööda täiesti erinevaid teid. Järelikult pole olulised ka E-vektori pikkuse ja suuna muutused liikumise käigus. Näiteks ei sõltu elektrilambi põlemine üldse lambi hõõgniidi kujust ja E-vektori suuna muutumisest piki hõõgniiti. Oluline on vaid energia, mis vabaneb laengukandjate läbiminekul hõõgniidist. Seetõttu on elektrivälja iseloomustamiseks võetud kasutusele veel üks suurus - välja potentsiaal.

J.1.38 Erineva potentsiaaliga punktid homogeenses elektriväljas.

Väljatugevus E näitab teatavasti ühikulise positiivse laenguga kehale vaadeldavas punktis mõjuvat jõudu. Potentsiaal aga näitab, kui suur on selles punktis ühikulise positiivse laenguga keha potentsiaalne energia. Elektrivälja mingi punkti potentsiaali leidmiseks tuleb jagada sellesse punkti paigutatud laengu potentsiaalne energia laengu suurusega

(1.21)

Seejuures tähistab sõna laeng mõistagi laetud keha või laetud osakeste kogumit.

Potentsiaal on skalaarne ehk suunata suurus, nii nagu rõhk või temperatuur.

Paigutades potentsiaali definitsioonivalemisse (1.21) energia avaldise (valem 1.19), saame homogeense välja potentsiaali (J.1.38) avaldada kujul

Kehade tegelik liikumine ei sõltu kuigivõrd potentsiaali nulltaseme asukohast. Seetõttu võib potentsiaali nulltaseme valida lähtuvalt konkreetse ülesande tingimustest. Reeglina valitakse selleks punkt, millest laetud keha elektrivälja mõjul enam edasi liikuda ei saa. Elektrotehnikas loetakse tavaliselt nulliks Maa potentsiaal või siis elektriseadme maandatud metallkorpuse potentsiaal.

Ekvipotentsiaalpinnad
J.1.39 Jõujooned ja ekvipotentsiaalpinnad kahe ühtlaselt laetud plaadi vahel.

Ühesugust potentsiaali omavate elektrivälja punktide hulka nimetatakse ekvipotentsiaalpinnaks.

Homogeenses elektriväljas kahe erimärgiliselt laetud plaadi vahel (J.1.39) on ekvipotentsiaalpindadeks plaatidega paralleelsed tasandid. Potentsiaal muutub kõige kiiremini liikumisel piki elektrivälja jõujoont. Liikumisel jõujoonega ristuvas suunas jääb potentsiaal konstantseks.

Ekvipotentsiaalpinnad on alati jõujoontega risti. Jõujooned ja ekvipotentsiaalpinnad on kaks eri vahendit elektrivälja kirjeldamiseks. Nad on nagu kaks erinevat keelt, mis annavad edasi üht ja sama mõtet.

Elektriline pinge ja selle seos väljatugevusega

Keha liikumine potentsiaalse välja kahe punkti vahel ei sõltu punktide potentsiaalide absoluutsest suurusest. Ta sõltub vaid nende punktide potentsiaalide vahest. Nii näiteks voolab jõgi ühtemoodi aeglaselt tasasel kõrgustikualal (platool) ja merelähedasel madalal tasandikul. Voolu kiirust ei määra mitte absoluutne kõrgus (merepinnast), vaid jõe vaadeldava lõigu otspunktide kõrguste vahe. Analoogiliselt on ka laengukandjate liikumise kiirus elektriväljas määratud potentsiaalide vahega.

Elektrivälja kahe punkti potentsiaalide vahet nimetatakse elektriliseks pingeks . Potentsiaali definitsiooni (valemi 1.21) kohaselt võib pinge avaldada kujul

ja on seejuures laengut omava keha potentsiaalse energia väärtused elektrivälja kahes punktis. Nende väärtuste vahe võrdub tööga, mida teeb väli selle keha nihutamisel ühest punktist teise. Järelikult

(1.24)

kahe punkti vaheline pinge näitab, kui suurt tööd teeb elektriväli ühikulise positiivse laenguga keha viimisel ühest punktist teise. Laetud keha liikumisel piki jõujoont on keha nihe võrdne teekonna algus- ja lõpp-punkti vahekaugusega d ning tehtav töö avaldub kujul . Järelikult valemi 1.24 põhjal

Siit tuleneb praktiline eeskiri elektrivälja tugevuse leidmiseks. Nimelt saame elektrivälja tugevuse, jagades kahe punkti vahelise pinge nende punktide vahekaugusega , mis on mõõdetud piki välja mõjumise suunda. Seega

(1.26)

Valem 1.26 on täiesti täpne homogeenses elektriväljas. Mittehomogeenses väljas annab ta keskmise väljatugevuse vaadeldavas piirkonnas.

Valemiga 1.24 on määratud potentsiaali ja pinge ühik volt (1 V). Elektrivälja kahe punkti vahel on pinge üks volt, kui laengu 1 C viimisel ühest punktist teise tehakse töö 1 J. Seega

Suures Hadronite Põrgutis antakse prootonitele energia 7TeV ().

Samast seosest tuleneb töö ja energia ühik elektronvolt (1 eV). Kuna valemi 1.24 põhjal  , siis üks elektronvolt on töö, mida teeb elektriväli elementaarlaengut omava osakese (elektroni) viimisel ühest punktist teise, kui pinge nende punktide vahel on üks volt.

Üks elektronvolt on järelikult sama arv kordi väiksem ühest džaulist kui mitu korda elementaarlaeng on väiksem ühest kulonist. Elektronvolt on sobivaks töö ja energia ühikuks mikromaailma protsesside kirjeldamisel, millega tutvume gümnaasiumi füüsikakursuse lõpus.

Valemi 1.26 abil on saadud elektrivälja tugevuse SI-ühik volt meetri kohta (1 V/m). See on identne valemist (1.10 ) tuleneva ühikuga 1 N/C, sest

Üks volt meetri kohta on sellise elektrivälja tugevus, milles potentsiaal muutub liikumisel piki välja suunda igal meetril ühe voldi võrra.

Pinge ja potentsiaali teema lõpetuseks meenutagem Füüsikalise looduskäsitluse aluste kursust, milles tutvusime töö kui protsessi kirjeldava suuruse ja potentsiaalse energia kui süsteemi olekut (seisundit) kirjeldava suurusega. Pole raske märgata, et Elektromagnetismis kirjeldab protsessi pinge, olukorda elektrivälja mingis punktis aga potentsiaal. Protsess viib süsteemi ühest olekust teise, mistõttu töö on kahe potentsiaalse energia vahe ning pinge kahe potentsiaali vahe. Samas võib potentsiaale vaadelda kui pingeid mingi ühise kokkuleppelise nulltaseme suhtes.

Elektrivälja tugevus juhtiva keha pinna lähedal sõltub pinna kujust. Teraviku ümbruses saavutab väljatugevus väga suure väärtuse, sest teravik käitub punktlaenguna, millele lähenemisel väljatugevus kiiresti suureneb. Elektrivälja tugevnemisega teravike läheduses võib kaasneda laengu äravool teravikelt, sest õhk teraviku ümber muutub elektrit juhtivaks. Vastavalt püütakse kõrgepingeseadmetes vältida teravaid nurki ja väljaulatuvaid osi. Ka välgueelne elektriväli õhus on kõige tugevam maast lähtuva teraviku läheduses. Seetõttu on hoonetele parimaks kaitseks piksevarras. Välgulöök tabab suure tõenäosusega eelkõige piksevarrast, aga mitte hoonet.

Kui välk lööb maasse, siis on maapinna potentsiaal välgust tabatud kohas hetkeks oluliselt erinev Maa üldisest potentsiaalist. Selle tagajärjel muutub potentsiaal piki maapinda lähenemisel välgust tabatud kohale. Mida rohkem on inimese üks jalg välgutabamuse asukohale lähemal kui teine, seda suurem potentsiaalide erinevus (pinge) tekib tema kahe jala vahel. Niisugust pinget nimetatakse sammupingeks. Sammupinge võib esineda ka elektrijuhtmestiku rikke tagajärjel. Igatahes on elektriohu korral soovitav liikuda võimalikult lühikeste sammudega, et vältida suure sammupinge tekkimist.

Äikese ajal pole soovitav ujuda või sõita paadiga. Välisantenni kasutamise korral ei maksa äikese ajal vaadata telerit. Tasub hoiduda ahju kütmisest, kuna suitsusammas sisaldab harilikust õhust oluliselt rohkem laetud osakesi. Seetõttu võib välk tema kaudu majja sisse lüüa.

Kokkuvõte

Punktlaengu energia homogeenses elektriväljas

Punktlaengu potentsiaalne energia homogeenses elektriväljas tugevusega on esitatav kujul , kus on selle laengu kaugus energia nulltasemest.

Elektrivälja potentsiaal

Elektrivälja potentsiaal näitab, kui suur on vaadeldavas punktis ühikulise positiivse laenguga keha potentsiaalne energia.

Ekvipotentsiaalpinnad

Ühesugust potentsiaali omavate elektrivälja punktide hulka nimetatakse ekvipotentsiaalpinnaks.

Elektriline pinge

Elektrivälja kahe punkti potentsiaalide vahet nimetatakse elektriliseks pingeks. Kahe punkti vaheline pinge näitab, kui suure töö teeb elektriväli positiivset ühikulist laengut omava keha viimisel ühest punktist teise.

Kulon, džaul ja volt

Kui laengu 1 C viimisel ühest punktist teise teeb elektriväli töö 1 J, siis on pinge nende punktide vahel üks volt (1 V).

Elektronvolt

Üks elektronvolt (1 eV) on töö, mida teeb elektriväli elementaarlaengut omava osakese viimisel ühest punktist teise, kui pinge nende punktide vahel on üks volt.

Elektrivälja tugevuse ühik

Üks volt meetri kohta (1 V/m) on sellise elektrivälja tugevus, milles potentsiaal muutub liikumisel piki jõujoont igal meetril ühe voldi võrra.

Kontrollküsimused
Kas kahe ühtlaselt laetud metallplaadi vahel tekkivas elektriväljas võiks potentsiaalse energia nulltaseme paigutada ka positiivselt laetud plaadi asukohta?
Ühe tunni jooksul teeb elektriväli auto lähitule lambi hõõgniidis töö 150 kJ. Seejuures on voolutugevus hõõgniidis 3,4 A ja elektrivälja tugevus 900 V/m. Leida hõõgniidi pikkus.
Kui palju on ühelt metallelektroodilt väljunud elektroni energia kasvanud teise elektroodini jõudmisel, kui elektroodide vahekaugus on 10 cm ja nende vahel on elektriväli tugevusega 20 kV/m? Vastus anda elektronvoltides.
Milline raskusvälja kirjeldav suurus on analoogiline elektrivälja potentsiaalile? Võrrelgem valemeid ja ning potentsiaali definitsiooni.
Kas maapind äikesepilve all on ekvipotentsiaalpind või mitte?
Miks on veest välja ulatuv ujuja pea välgule heaks märklauaks?
Pinge külmkapi elemendil on 230 V ja vool selles on 0,60 A. Kui palju energiat kulutab selline külmkapp ühe kuu jooksul?
KontrollküsimusedLisamaterjalid
Elektriväli ja magnetväli - lõpetuseks
Kass vaatab välku
Richmann

Ei ole üldse kindel, et Benjamin Franklin oma lohekatset ka tegelikult tegi. Jah, ta kirjeldas sellist katset oma 1750 a. artiklis, aga ta andis endale ka aru ohtudest, mis sellise katse tegijat ähvardavad. Nii hästi ei läinud Peterburis töötanud Saksa päritolu teadlasel Georg Wilhelm Richmann’il, kes välgutabamuse saanud lohe tekitatud plahvatuses surma sai. Igal juhul sai 18. sajandi lõpul kinnitust hüpotees, et välk on elektriline nähtus ja majad said endale Franklini leiutatud väga kasuliku seadeldise - piksevarda.

Elektromagnetväli
Kass küsib, kas elektriautole on vaja rattaid?

Jaapanis, Tokyo ja Nagoya vahel on kõigil huvilistel võimalik sõita rongiga, mis hõljub oma "rööbaste" kohal ja sõidab sealjuures kiirusega kuni 600 km/h, ehk vahemaa Tartu ja Tallinna vahel läbiks selline rong vähem kui poole tunniga. Öeldakse, et sellised rongid kasutavad "magnetilist levitatsiooni". Tõepoolest, teame hästi, et kaks magnetit võivad tõukuda, aga see ei saa olla kogu tõde - üks magnet ei jää teise kohale hõljuma, ükskõik kui hoolikalt me neid üksteise suhtes ka ei asetaks.

Selgub, et elektri- ja magnetnähtuste ampluaa muutub tohutult rikkalikumaks, kui me paneme laengud ja magnetid liikuma. Sest tekivad elektromagetväljad.

Ühele osakesele mõjuv magnetjõud
Elektromagnetilise induktsiooni nähtus
Tagasiside on nähtus, mille korral ühe füüsikalise suuruse muutumine põhjustab teiste suuruste selliseid muutusi, mis omakorda mõjutavad esimest suurust.

Käesolevas peatükis asume käsitlema elektri- ja magnetvälja muutumist ajas. Vaatleme ka kahe välja sügavamaid omavahelisi seoseid ning vastastikuseid muundumisi.

Seejuures tuleb enamasti eeldada laetud osakeste mitteühtlast (kiirenevat või aeglustuvat) liikumist. Samuti pole elektri- ja magnetvälja enam võimalik vaadelda teineteisest lahus. Tegemist on elektromagnetilist vastastikmõju vahendava ühtse elektromagnetväljaga. Selle välja uurimise muudab keeruliseks protsesside tagasisidestatus. Tagasiside on nähtus, mille korral ühe füüsikalise suuruse muutumine põhjustab teiste suuruste selliseid muutusi, mis omakorda mõjutavad esimest suurust. Näiteks põhjustab pendli hälbe suurenemine tasakaaluasendi poole suunatud jõu kasvamist. See jõud aga pidurdab hälbe kasvu ja pendli liikumine aeglustub. Antud juhul pidurdab teise suuruse (jõu) muutus esimese suuruse (hälbe) muutumist. Selle kohta öeldakse, et hälbe muutus on negatiivselt tagasisidestatud. Elektromagnetvälja korral on igasugune elektrivälja muutus tagasisidestatud temaga kaasneva magnetvälja muutuse kaudu. Kui laetud keha vaatleja suhtes liigub, siis muutub keha elektriväli vaatleja asukohas ning vaatleja registreerib ka magnetvälja (J.2.1). Peagi veendume, et see kõik kehtib ka ümberpöördult. Kui magnetvälja tekitaja (püsimagnet) vaatleja suhtes liigub, siis muutub magnetväli vaatleja asukohas ning vaatleja täheldab ka elektrivälja olemasolu (J.2.2). Magnetvälja muutumine tekitab elektrivälja. Seda nimetatakse elektromagnetilise induktsiooni nähtuseks. Märkigem veel, et võõrsõna indutseerima eestikeelseks vasteks ongi tekitama või esile kutsuma.

Juba põhikooli Elektriõpetuses saime teada, et elektromagnetilisel induktsioonil põhineb generaatori töö. Tea­ta­­­vasti muundab generaator mehaanilist energiat elektrienergiaks, olles nii keskses rollis elektrienergia tootmisel. Elektromagnetnähtuste tundmaõppimine võimaldab meil mõista seda inimkonnale üliolulist protsessi.

Käesolevas peatükis vaatleme siis lähemalt, kuidas muutuv magnetväli saab tekitada elektrivälja. Loomulikult teeme ka kindlaks, millest sõltub vastav väljatugevus või pinge. Lõpuks uurime, mismoodi võib elektromagnetväljas salvestuda energia.

Lorentzi jõud

Selleks, et kirjeldada laengukandjate liikumist elektriväljas, mis tekib magnetvälja muutumisel, peame kõigepealt tutvuma magnetväljas liikuvale laetud osakesele mõjuva jõuga. Seda jõudu nimetatakse hollandi füüsiku Hendrik Antoon Lorentz'i (1853 – 1928) auks Lorentzi jõuks.

Juhtmelõigule, mille pikkus on  ja milles kulgeb vool tugevusega , mõjub teatavasti magnetväljas induktsiooniga magnetjõud . Selle jõu suurus on leitav Ampère'i seadusest (valem 1.12)

kus on nurk voolu suuna ja magnetvälja suuna vahel. Voolu olemasolu tähendab laengukandjate suunatud liikumist keskmise kiirusega . Mõistagi osalevad laengukandjad ka kaootilises (kindla suunata) liikumises, aga see meid praegu ei huvita. Jõud Ampère'i seaduses summeerub üksikutele liikuvatele laengukandjatele mõjuvatest Lorentzi jõududest. Seega tuleb Lorentzi jõu leidmiseks jagada juhtmele kui tervikule mõjuv magnetjõud liikuvate laengukandjate arvuga :

Vaatleme laengukandjaid, mis liiguvad keskmise kiirusega  läbi silindrikujulise juhtmelõigu (J.2.3).

Kui juhtmelõigu pikkus  on parajasti võrdne korrutisega (Mehaanika kursuse valem ), siis jõuavad kõik silindris sisalduvad laengukandjad aja jooksul juhtmelõigust läbi tagumise otsapinna väljuda. Laengukandjatel, mis on tagumisele otsale lähemal kui , kulub selleks mõistagi seda vähem aega, mida väiksem pikkus neil läbida tuleb, aga aja jooksul väljuvad kõik laengukandjat. Nende kogulaeng on , kus on ühe laengukandja laeng.

Voolutugevuse definitsiooni (valem 1.1) põhjal saame, et:

Järelikult on Lorentzi jõu vektori pikkus esitatav kujul

kuna juhtmelõigu pikkuse  ja laengukandjal selle läbimiseks kulunud aja suhe võrdub laengukandja suunatud liikumise kiirusega . Niisiis mõjub laengut omavale ja kiirusega liikuvale osakesele magnetväljas induktsiooniga  Lorentzi jõud

kus on nurk osakese liikumissuuna (kiirusvektori) ja magnetvälja suuna (B-vektori) vahel (J.2.3). Kuna positiivse laenguga osakesed liiguvad voolu kokkuleppelises suunas, siis võib neile mõjuva Lorentzi jõu suuna määrata vasaku käe reegli abil, mis antud juhul kõlab järgmiselt. Kui vasaku käe väljasirutatud sõrmed näitavad positiivselt laetud osakese liikumise suunda ja magnetvälja jõujooned tulevad peopessa, siis väljasirutatud pöial näitab osakesele mõjuva Lorentzi jõu suunda (J.2.4).

Elektroni kui negatiivselt laetud osakese korral on Lorentzi jõu suund eelnevale vastupidine, sest valemisse 2.1 ilmub miinusmärk. Elektronile mõjuva Lorentzi jõu suunda näitab analoogiliselt paikneva parema käe pöial.

Tasub rõhutada, et Lorentzi jõud mõjub laetud osakestele alati risti nii liikumissuuna kui ka magnetvälja suunaga. Seetõttu ei saa Lorentzi jõud liikumisel tööd teha. Ta võib vaid muuta liikumise suunda. Kõige tugevam on Lorentzi jõud liikumissuunaga ristuvas magnetväljas. Sel juhul ja järelikult

Kui laengukandja kiirusvektor on risti magnetvälja suunaga (B-vektoriga), siis paneb Lorentzi jõud vaakumis asetseva laengukandja liikuma piki ringjoont ümber magnetvälja suuna, toimides kesktõmbekiirendust andva jõuna. Kui laengukandja liigub piki magnetvälja suunda (v- ja B-vektorid on samasihilised), siis Lorentzi jõudu ei teki, sest on ja seega ka .

Lorentzi jõu mõju kohta on ka palju demoeksperimente, kus elektronkiir magnetvälja mõjul oma suunda muudab.

Selgitavad joonised selle katse kohta:

Kui v- ja B-vektorite vahel on suvaline nurk, siis võime laengukandja kiiruse lahutada kaheks komponendiks: B-vektoriga ristuvaks ja B-vektoriga paralleelseks . Ristuva komponendi olemasolu põhjustab laengukandja täiendava ringjoonelise liikumise ümber magnetvälja suuna. Sellega kaasneb laengukandja liikumine kiirusega piki magnetvälja suunda. Tulemusena liigub laengukandja mööda kruvijoont (ruumilist spiraali). Nii liiguvad näiteks kosmilise kiirguse laetud osakesed Maa ionosfääris piki spiraale, mille telgedeks on Maa magnetvälja jõujooned. Pannes kosmilise kiirguse osakesed ümber Maa spiraalima, kaitseb Maa magnetväli otsese kosmilise kiirguse eest kõike elusat Maa peal.

Kokkuvõte

Elektromagnetväli

Elektromagnetväljaks nimetatakse elektromagnetilist vastastikmõju vahendavat välja, mille piirjuhtudeks on elektriväli ja magnetväli.

Elektromagnetilise induktsiooni nähtus

Elektromagnetilise induktsiooni nähtuseks nimetatakse elektrivälja tekkimist magnetvälja muutumisel.

Magnetväljas liikuvale laengule mõjuv jõud

Laengut omavale ja kiirusega liikuvale osakesele mõjub magnetväljas induktsiooniga Lorentzi jõud , kus   on nurk osakese liikumissuuna ja magnetvälja suuna vahel.

Lorentzi jõu suund

Lorentzi jõud on suunatud alati risti nii liikumise suunaga kui ka magnetvälja suunaga.

Kontrollküsimused
Kas Lorentzi jõuga saab laetud osakesi kiirendada?
Tehke joonis, mis selgitaks Lorentzi jõu toimimist laengukandjale kesktõmbekiirendust andva jõuna.
Kas kaks ühesuguse kiirusega paralleelselt liikuvat elektroni mõjutavad teineteist magnetjõuga?
Lähtudes Newtoni II seadusest, tuletage valem, mis seoks magnetväljas ringjooneliselt liikuva laetud osakese nurkkiirust w = 2p f = v/r magnetinduktsiooniga B.
Elektron liigub magnetväljas ringorbiidil ja teeb miljard pööret sekundis. Elektroni mass on 9,1 . 10–31 kg ja laeng 1,6 . 10–19 C. Kui suur on magnetinduktsioon?
KontrollküsimusedLisamaterjalid
Pööriselektriväli ja induktsiooni elektromotoorjõud
Induktsioonivool ja pööriselektriväli
J.2.5 Vooluga juhtmelõik U-magneti magnetväljas.

Esimeses peatükis vaatlesime vooluga juhtmele mõjuvat magnetjõudu. Asume nüüd uurima mootori mähisekeeru lõiku ab, mis generaatorina toimivas mootoris liigub ülespoole mitte enam magnetjõu vaid masina võlli päripäeva pöörava välisjõu toimel (J.2.7). Laengukandjad juhtmelõigus ab liiguvad koos juhtmega. Magnetväljas liikuvatele laetud osakestele mõjub aga teatavasti Lorentzi jõud, mis positiivsetele laengukandjatele rakendub vasaku käe reegli kohaselt "meist eemale" ehk suunas ab. Analoogiliselt mõjub juhtmelõigus cd positiivse laengu kandjatele jõud suunas cd ehk "meie poole". Järelikult hakkavad positiivsed laengukandjad vaadeldavas juhtmekeerus Lorentzi jõu mõjul liikuma suunas abcd. Juhtmekeeru otste a ja d ühendamisel moodustub vooluring, milles keeru pööramise tulemusena kulgeb elektrivool. Juhtme liikumine magnetväljas tekitab juhtmes induktsioonivoolu, mille suund on vastupidine mootori korral toiteallika poolt tekitatud voolule. Nende kahe voolu vastassuunalisuses juhtmelõigu sama liikumissuuna korral avaldub Lenzi reegel, millega me hiljem (p.2.5.1) tegeleme pikemalt. Samas ei tohi unustada, et mootori korral on uuritav mähisekeerd tarviti, generaatoris aga vooluallika rollis.

Olgu öeldud, et nii sellel kui ka kõigil järgnevatel joonistel on jämeda noolega tähistatud juhtmelõigu liikumise suund. Samuti uurime nii siin kui ka edaspidi positiivsete laengukandjate liikumist, ehkki tegelikult on metalljuhtmes laengukandjateks negatiivsed juhtivuselektronid. Niisugune lihtsustus on põhjendatud, sest voolu suund ühtib voolu tekitava elektrivälja suunaga ega sõltu laengukandjate märgist (p.1.2.6).

Elektrimootorit saab kasutada ka generaatorina.

Voolu uuritavas mähisekeerus võib vaadelda tingituna elektriväljast, mille jõujooned on kontuuri abcd suunalised kinnised jooned. Meenutagem siinkohal FLA (Füüsikalise looduskäsitluse aluste) kursust, mida alustasime tõdemusest, et iga vaatleja loob füüsikalise maailmapildi omaenda aistingute või mõõtmistulemuste põhjal. Kui vaatleja täheldab elektrivoolu olemasolu ning teab, et vool on tingitud samas suunas toimivast elektriväljast, siis on vaatleja registreerinud ka elektrivälja. Selle elektrivälja tekkepõhjuseid võib vaatleja edaspidi uurida, kuid tal pole põhjust kahelda välja olemasolus. Magnetvälja muutumisel tekkiva elektrivälja suhtes pole enam rakendatav potentsiaali mõiste. Meil ei ole ju mingit alust eelistada suletud kontuuri mingit kindlat punkti teistele ja väita, et just selle punkti potentsiaal on kõrgem kui mõnel teisel punktil. Tekkiv elektriväli ei ole potentsiaalne, tema jõujooned on alguse ja lõputa kinnised jooned ehk pöörised. Seetõttu nimetatakse niisugust elektrivälja pööriselektriväljaks.

J.2.8 Koos juhtmega magnetvälja suunas liikuvatele laengutele jõudu ei mõju.

On märkimisväärne, et kirjeldatud juhul liigub juhtmelõik homogeenses magnetväljas. B-vektor on liikumistee eri punktides ühesugune nii suuruselt kui suunalt. Miks me siis ikkagi võime rääkida magnetvälja muutumisest juhtmelõigu asukohas? Me teeme seda põhjusel, et juhe liigub magnetvälja tekitaja suhtes risti välja suunaga ning lõikab magnetvälja jõujooni. Näiteks liikumisel magnetvälja suunas juhe jõujooni ei lõika (J.2.8). Sellisel liikumisel laengukandjatele magnetjõudu ei mõju, kuna Lorentzi jõu valemis

on nurk võrdne nulliga. Järelikult ei teki sel juhul ka induktsioonivoolu.

Magnetväljas liikuva juhtmelõigu otstel tekkiv pinge

Juba põhikooli Elektriõpetuses liiguti magnetjõu tekkimise juurest elektromagnetilise induktsioonini (p.2.2.1). Seega tasub meil neid kahte nähtust omavahel võrrelda ka siin. Vaatleme veelkord paremale suunatud magnetväljas asetsevat horisontaalset juhtmelõiku (elektrimootori mähise osa ab).

Kui me tekitame selles juhtmes meie poole suunatud voolu I, siis hakkab juhtmele Ampere’i seaduse ja vasaku käe reegli kohaselt mõjuma ülespoole suunatud magnetjõud (J.2.9). Võimaluse korral hakkab juhe selles suunas liikuma. Kirjeldame nähtust kokkuvõtlikult kujul:

elektrivool + magnetväli liikumine.

Joonisel 2.10 on aga näha, mis juhtub siis, kui me niisugust magnetväljas asetsevat juhet ise ülespoole liigutame. Laengukandjad juhtmes liiguvad koos juhtmega üles ja neile hakkab mõjuma meist eemale suunatud Lorentzi jõud . Juhtmes tekib induktsioonivool . Nähtust võib kokkuvõtlikult kirjeldada kujul:

magnetväli + liikumineelektrivool.

Niisiis on elektromagnetilise induktsiooni näol tegemist omalaadse pöördprotsessiga magnetjõu tekkimisele.

Pööriselektrivälja jõujooned on kinnised, alguse ja lõputa jooned, nii nagu magnetvälja jõujoonedki. Jõu mõjul liikuvat juhtmelõiku ümbritseb ja läbib pööriselektriväli samamoodi nagu magnetväli ümbritseb ja läbib püsimagnetit (J.2.11).

J.2.11 a) Liikuva juhtme pööriselektriväli Ep, b) püsimagneti magnetväli B.

Vaatleme nüüd isoleeritud juhtmelõiku, mis liigub kiirusega magnetväljaga ristuvas suunas ning on ka ise risti selle suunaga (J.2.12). Koos juhtmega üles liikuvatele positiivsetele laengukandjatele (laenguga ) mõjub Lorentzi jõud . Laengukandjad liiguvad selle magnetjõu mõjul piki juhet tahapoole, aga juhtmest välja nad ei pääse. Juhtme otsad laaduvad erimärgiliselt ja juhtmes tekib ettepoole suunatud elektriväli. Laengukandjate liikumine kestab seni, kuni neile mõjuv elektrijõud (valem 1.11) magnetjõu tasakaalustab. Vastav elektrivälja tugevus on väljendatav pinge kaudu (valem 1.26)

kus  on juhtmelõigu pikkus ( algkujus tähis ). Tasakaalu tingimuse võib siis esitada kujul

millest tulenevalt võime juhtmelõigu otstele indutseeritava pinge avaldada kujul

(2.2)

Juhul kui juhtme liikumissuund moodustab magnetväljaga mingi nurga , mis ei ole täisnurk, siis põhjustab Lorentzi jõudu vaid liikumissuunaga ristuv B-vektori komponent  (J.2.13). Liikumisel magnetvälja sihis ju teatavasti magnetjõudu ei teki (p.2.1.3). Indutseeritud pinge avaldis võtab kuju

Näide 2.1.

Tartu-Tallinna kiirrong sõidab kiirusega 108 km/h maa magnetvälja horisontaalkomponendi suunas. Kui suur pinge tekib elektromagnetilise induktsiooni tõttu vaguniratta telje otstele? Rööbaste vahekaugus on 1524 mm ja Maa magnetinduktsiooni vertikaalkomponent Eestis 48 μT.

Lahendus

Andmed



Arvutused

Rattatelg on vaadeldav kui juhtmelõik, mis on risti nii oma liikumissuuna kui ka magnetinduktsiooni vertikaalkomponendiga , see­juures .

Kasutades valemit

saame kirjutada:

.

Vastus: Telje otste vahel tekib pinge . Praktikas jäetakse see pinge tema väiksuse tõttu arvestamata.

Induktsiooni elektromotoorjõud
Ilma tööd tegemata ei liigu siin maailmas midagi.

Eelmises punktis jõudsime magnetvälja suhtes liikuvas isoleeritud juhtmelõigus indutseeritud pinge avaldiseni. Seejuures tuginesime oma teadmistele Lorentzi jõu kohta. Elektromagnetilise induktsiooni avastajal Michael Faraday'l neid teadmisi ei olnud. Faraday uuris kinnisi vooluringe, määrates voolutugevust magnetnõela kõrvalekaldumise järgi tasakaaluasendist (Oerstedi katse, p.1.4.2). Kuid Faraday mõistis, et laengukandjate liikumapanemiseks tuleb teha tööd. Kirjeldamaks laengukandjate liikumapanemisel kinnises kontuuris tehtavat tööd hakkas Faraday kasutama elektromotoorjõu mõistet (electromotive force – EMF, vastav eestikeelne lühend EMJ).

Elektromotoorjõud (tähis ehk suur ümmargune E) iseloomustab üldjuhul vooluallikas toimivaid mitteelektrilisi jõude ehk kõrvaljõude. Elektrivoolu püsimiseks keemilist vooluallikat (patareid või akut) sisaldavas vooluringis tuleb vooluallika positiivselt pooluselt ehk plussklemmilt läbi vooluringi miinusklemmile jõudnud positiivsed laengukandjad viia läbi vooluallika uuesti plussklemmile. Järelikult tuleb neid nihutada vastupidiselt elektrijõu suunale. Seda suudavad teha ainult kõrvaljõud. Elektromotoorjõud on võrdne kõrvaljõudude tööga Ak ühikulise suurusega laengu ühekordsel läbiviimisel kogu vooluringist:

(2.4)

Keemilise vooluallika korral teeb kõrvaljõud selle töö ära vooluallika sees, tekitades vooluallika pooluste vahel elektrivälja, mistõttu laengukandjad saavad väljaspool vooluallikat ehk vooluringi välisosas liikuda juba elektrijõu mõjul. See energia, mille arvel laengukandjad suunatud liikumist takistavate jõudude kiuste kogu vooluringi läbivad, tuleb lõppkokkuvõttes kõrvaljõult. Keemilise vooluallika korral on laengukandjate liikumine vahetult kõrvaljõu toimel vooluallika sees ja elektrijõust põhjustatud laengukandjate liikumine vooluringi välisosas ruumiliselt lahutatud. Seepärast võime EMJ käsitleda kui suurimat pinget, mida keemiline vooluallikas on suuteline oma klemmidele tekitama. Elektromagnetilise induktsiooni korral võib aga üksainus kinnine juhtmerõngas olla üheaegselt nii vooluallika kui vooluringi välisosa rollis. Kõrvaljõu ja elektrijõu toimete ruumilist lahutatust ei ole ning potentsiaali ja pinge mõistetel puudub sisu, kui tõlgendada pinget vaid elektrijõudude tööna ühikulise laengu viimisel ühest punktist teise (p.1.7.4). See ongi peapõhjuseks, miks jätkuvalt kasutatakse kõlaliselt mõnevõrra eksitavat mõistet elektromotoorjõud. EMJ pole ju jõud ja tema ühikuks pole njuuton. EMJ on töö ja laengu suhe ehk pinge ja tema ühikuks on volt. Kuid nii öeldes peame mõistma pinge all kõigi liikumapanevate jõudude (ka kõrvaljõudude) tööd ühikulise laengu nihutamisel. Olles selles kokku leppinud, võime EMJ käsitleda kui kõikide pingete summat kinnises vooluringis.

Seni vaadeldud näidetes on kõrvaljõuks just seesama jõud, mis liigutab juhet või pöörab generaatori võlli magnetväljas.

Mingi juhtmelõigu liigutamisel magnetväljas tuleb teha tööd mitte ainult mehaanilise hõõrdejõu ületamiseks, vaid ka laengukandjate liikumapanemiseks juhtmega ühendatud vooluringis, juhul kui see vooluring on olemas. Elektromagnetilist induktsiooni võib vaadelda kui omalaadset ,,lisahõõrdumist" magnetväljas. Kui induktsioonivool viib positiivse ühikulise laengu üks kord läbi tekkiva vooluringi, siis kõrvaljõu poolt selleks tehtavat tööd nimetatakse induktsiooni elektromotoorjõuks. Ülaltoodu põhjal võib induktsiooni elektromotoorjõudu tõlgendada ka kui pinget, mis tekib katkestuskohas, kui me kasutame elektromagnetilisel induktsioonil põhinevat vooluallikat ja katkestame kuskil vooluringi. Lihtsaimaks selliseks vooluallikaks ongi liikumisel magnetvälja jõujooni lõikav juhtmetükk (p.2.2.2).

Kokkuvõte

Induktsioonivoolu tekkimine

Jõud, mis nihutab juhet magnetväljas, paneb elektromagnetilise induktsiooni teel laengukandjad juhtmes liikuma. Kui liikuv juhe on osa vooluahelast, siis esineb selles ahelas induktsioonivool.

Pööriselektriväli

Pööriselektriväljaks nimetatakse elektrivälja, mille jõujooned on kinnised jooned ehk pöörisjooned. Selline elektriväli tekib magnetvälja muutumisel.

Magnetväljas liikuva juhtmelõigu otstel tekkiv pinge

Magnetväljas liikuva juhtmelõigu otstel tekkiv pinge avaldub kujul , kus on juhtmelõigu liikumise kiirus magnetvälja tekitaja suhtes, – magnetinduktsioon, – juhtmelõigu pikkus ja – nurk liikumise suuna ning

Induktsiooni elektromotoorjõud

Induktsiooni elektromotoorjõuks nimetatakse tööd, mida juhet liigutav kõrvaljõud teeb ühikulise positiivse laengu ühekordseks läbiviimiseks vooluringist.

Kontrollküsimused
Töötava elektrimootori korral liiguvad mähise juhtmekeerud magnetväljas. Järelikult peaks neis indutseeritama pinge, mis mõjub mähist läbivale voolule. Kas vool mähises muutub, kui rootor hakkab pöörlema?
Kui vastus eelmisele küsimusele on jaatav, kas siis induktsiooni elektromotoorjõud soodustab või takistab mootori toiteallika tööd?
Pooluste läheduses on Maa magnetväli peaaegu vertikaalne. Seetõttu lõikab polaarpiirkonnas lendava lennuki metallkere Maa magnetvälja jõujooni. Lennukikeret võiks vaadelda magnetväljas liikuva juhtmelõiguna, mille otstel tekib elektromagnetilise induktsiooni teel pinge. Kas suurem pinge indutseeritakse lennuki tiivaotste vahel või lennuki nina ja saba vahel?
Kas piki ekvaatorit lendava lennuki kere mingite osade vahel võib elektromagnetilise induktsiooni vahendusel samuti tekkida pinge? Kui jah, siis millised need kere osad on?
KontrollküsimusedLisamaterjalid
Faraday katsed
Michael Faraday, (1791 – 1867)

Suure avastuse sünnihetk on teaduse ajaloos harva teada kuupäevalise täpsusega. Elektromagnetilise induktsiooni avastamine kuulub aga nende harvade erandite hulka. See on nii tänu avastuse autori Michael Faraday täpsetele ülestähendustele. 29. augustil 1831 kirjutas Faraday laboripäevikusse, et raudsüdamikule mähitud juhtmepooli ühendamine vooluallikaga kutsub esile lühiajalise voolu ka teises, samale südamikule keritud poolis. Sama aasta 17. oktoobril tehtud sissekanne kõneleb aga voolu registreerimisest poolis, millele mõjuvat magnetvälja püsimagneti nihutamise teel muudeti.

Juba aastal 1822, kaks aastat pärast elektrivoolu magnetilise toime avastamist Oerstedi ja Ampere'i poolt, tuli Faraday mõttele, et see nähtus peaks esinema ka ,,tagurpidi". Kui elektrivool tekitab magnetvälja, kas ei võiks siis magnetvälja abil tekitada elektrivoolu? Aastal 1825 asus Faraday seda oletust katseliselt kontrollima, kuid ei suutnud induktsioonivoolu avastada. Faraday ei mõistnud siis veel, et elektrivälja tekitab mitte magnetväli ise, vaid magnetvälja muutumine. Pealegi ei olnud Faraday käsutuses piisavalt tundlikku mõõteriista. Voolu mõõtis Faraday magnetnõela pöördumise järgi vooluga juhtme läheduses (Oerstedi katse).

1831. aasta suvel asus Faraday taas korraldama samalaadseid uuringuid. Nüüd aga tugevdas ta pooli magnetvälja raudsüdamiku abil. Magnetvälja järsk muutmine tekitas samal südamikul paiknevas teises poolis vooluimpulsi. Elektromagnetiline induktsioon oli avastatud.

Faraday tegi elektromagnetilise induktsiooni uurimisel väga palju katseid. Kui kasutada on tester või mõni muu voolutundlik mõõteriist, siis võib neid katseid vastava huvi olemasolu korral teostada ka kodustes tingimustes. Faraday katsed võiks jagada kolme gruppi, mida järgnevalt ka eraldi vaatleme.

Püsimagneti liikumine juhtme suhtes
J.2.15 Meie katsetes kasutatavate poolide valmistamine.

Põhiliseks katsevahendiks elektromagnetilise induktsiooni uurimisel on torukujulisele isoleerivale südamikule keritud juhtmepool. Kõigis allpool kirjeldatud katsetes on vaja koguni kahte niisugust pooli. Pooli võib valmistada ka ise sobiliku jämedusega (0,3-0,5 mm) vasktraadist. Sellist traati võib osta enam-vähem suvalisest elektridetailide poest.Traat tuleb tihedalt kerida silindrilisele papist või plastikust torukesele. Mähis võiks olla 2-3 cm pikkune ja sisaldada ülestikku vähemalt 5 kihti kõrvutiasetsevaid juhtmekeerde. Et mähis traadi elastsuse tõttu laiali ei laguneks, on soovitatav iga kiht pärast kerimise lõpetamist kleepribaga fikseerida.

Sellise katseseadmega on lihtne veenduda, et muutuv magnetväli kutsub poolis esile induktsioonivoolu. Tekkinud voolu võib registreerida tundliku ampermeetrina töötava testri abil. Magnetvälja on kõige lihtsam muuta, torgates pikergust püsimagnetit pooli sisse.

Kirjeldatud katse on põhimõtteliselt teostatav ka üheainsa juhtmekeeruga. Niisugusel juhul on tekkiv induktsioonivool aga niivõrd nõrk, et seda on raske mõõta. Pooli korral liituvad üksikutes keerdudes tekkinud elektromotoorjõud, sest keerud toimivad jadamisi ühendatud vooluallikatena. Seetõttu saame ka mõõtmiseks piisavalt tugeva induktsioonivoolu. Voolu indutseerimist üksikus juhtmekeerus selgitab joonis 2.16. Näiteks liigub juhtmelõik dc täpselt samamoodi paremale suunatud magnetväljas allapoole nagu lõik dc joonisel 2.6. Lõigus dc indutseeritakse selle tagajärjel meie poole (c→d) suunatud vool. Seevastu lõigus gh kulgeb induktsioonivool meist eemale (gh) ja juhtmekeerus tervikuna (ülalt vaadates) päripäeva.

Parema käe rusikareegli (J.2.17) abil võib veenduda selles, et induktsioonivoolu magnetväli on joonisel suunatud ülalt alla, niisiis vastupidiselt juhtmekeerus tugevnevale püsimagneti väljale. Induktsioonivool takistab sellesama magnetvälja kasvu, mis voolu esile kutsus. Tasub ka rõhutada, et induktsioonivool on olemas vaid seni, kuni juhtmekeerd püsimagneti jõujoonte suhtes liigub. Kui lõpeb liikumine, siis saab laengukandjatele mõjuv Lorentzi jõud nulliks, sest .

Vooluga juhtme liikumine teise juhtme suhtes

Magnetvälja põhjustajana võib püsimagneti asemel kasutada ka vooluga pooli.

J.2.18 Vooluga pooli nihutamisel juhtmekeeru suhtes tekib keerus induktsioonivool.

Kui me asendame joonisel 2.16 kujutatud katses püsimagneti pooliga (J.2.18), siis tekib ülemises juhtmekeerus induktsioonivool täpselt samamoodi nagu püsimagneti korral. Nii on see muidugi eeldusel, et juhtmekeerdu lähendatakse poolile ja pooli magnetväli on suunatud alt üles. Pooli magnetväljal on selline suund juhul, kui vool pooli keerdudes kulgeb ülalt vaadates vastupäeva (meie silme ees vasakult paremale). Induktsioonivool ise on kirjeldatavas katses teatavasti suunatud päripäeva (külgvaates paremalt vasakule). Seega on induktsioonivoolu suund vastupidine voolu suunale indutseerivat magnetvälja tekitavas poolis. Püüdkem iseseisvalt veenduda selles, et juhtmekeeru kaugenemisel poolist on ka induktsioonivool suunatud vastupäeva. Mõlemad vaadeldavad voolud on sel juhul samasuunalised.

J.2.19 Vooluga juhtme (1) lähendamisel teisele juhtmele (2) tekib selles juhtmes induktsioonivool.

Katsetamisel südamikuta poolidega võib induktsioonivool osutuda liiga nõrgaks. Sel juhul võib voolu tugevdada, paigutades eelnevalt poolide sisse raudsüdamikud (näiteks suured raudpoldid). Rauas on magnetinduktsioon palju suurem kui õhus. Seetõttu on suuremad ka magnetinduktsiooni muutused, millest omakorda sõltub induktsioonivoolu tugevus.

Analoogilised nähtused leiavad aset ka kahe paralleelse sirgjuhtme korral, millest ühes voolab alalisvool (J.2.19). Kui me nihutame üht juhet teisele lähemale, siis lõikavad vooluga juhtme 1 magnetvälja jõujooned vooluta juhet 2. Vasaku käe reegli kohaselt mõjub positiivsetele laengukandjatele juhtmes 2 meie poole suunatud Lorentzi jõud. Juhtmes 2 tekib seeläbi induktsioonivool, mille suund on vastupidine juhtmes 1 kulgeva voolu suhtes. See arutlus jääb kahjuks vaid teoreetiliseks, sest üksiku voolujuhtme magnetväli on väga nõrk ja tekkivat induktsioonivoolu on väga raske mõõta.

Voolu muutumine juhtmes

Kõigil seni vaadeldud juhtudel põhjustab elektromagnetilist induktsiooni puhtmehaaniline liikumine. Uuritav juhe liigub magnetvälja tekitaja suhtes. See aga ei pea alati nii olema. Magnetvälja võib muuta ka seda välja tekitava voolu muutmise teel juhtmes, nii et juhtmed jäävad paigale. Teatavasti toimis just nii ka Faraday oma esimeses katses.

J.2.20 Voolu sisselülitamine ühes juhtmes indutseerib vastupidise suunaga voolu naaberjuhtmes: a) katseseade, b) juhtme 1 magnetväli levib juhtme 2 poole.

Vaatleme näitena jällegi kahte paralleelset sirgjuhet, millest üks on läbi lüliti ühendatud vooluallikaga (J.2.20, a). Lüliti sulgemisel suureneb voolutugevus juhtmes nullist kuni mingi lõppväärtuseni . Vastavalt kasvab ka selle voolu magnetväli. Magnetvälja tugevnemine on aga samaväärne lähenemisega välja tekitavale juhtmele. Me teame ju (, p.1.5.3), et vooluga sirgjuhtme magnetinduktsioon on pöördvõrdeline kaugusega sellest juhtmest.

Niisiis mõjub juhtmest 1 tingitud magnetvälja levik juhtme 2 suunas (J.2.20, b) laengukandjatele samamoodi nagu juhtme 2 liikumine juhtme 1 poole. Eelmisest alapunktist teame, et seda laadi liikumine indutseerib juhtmes 2 meie poole suunatud voolu (J.2.19). Voolu sisselülitamine juhtmes tekitab vastupidise suunaga voolu naaberjuhtmes. Lõpetuseks märkigem, et kõik senised järeldused oleme me teinud, lähtudes teadmistest Lorentzi jõu kohta. Faraday jõudis samade järeldusteni katsetulemusi üldistades.

Kokkuvõte

Liikuva magneti mõju juhtmes

Liikuv püsimagnet tekitab voolu lähedalasuvas juhtmes.

Vooluga juhtme mõju naaberjuhtmes

Vooluga juhtme liikumine tekitab magnetvälja vahendusel voolu naaberjuhtmes.

Voolu muutuse mõju naaberjuhtmes

Voolu muutus juhtmes tekitab vastava magnetvälja muutuse kaudu voolu naaberjuhtmes.
KontrollküsimusedLisamaterjalid
Faraday induktsiooniseadus
Induktsiooni elektromotoorjõudu mõjutavad suurused
Kuidas tekiks võimalikult suur induktsioonivool?

Oleme nüüd päris palju tegelenud pööriselektrivälja tekkimisega magnetvälja muutumisel. Aga mis tähendus on üleüldse sõnadel magnetväli muutub? Millise füüsikalise suuruse muutumisest on jutt? Elektromagnetilise induktsiooni nähtus esineb teatavasti ka homogeenses magnetväljas (p.2.2.1). Seega ei saa otsitavaks muutuvaks suuruseks olla magnetinduktsioon . Vajalik suurus tuleb meil alles määratleda. Järgnevas katseseerias uurime, millest sõltub induktsiooni elektromotoorjõud.

Faraday seadus phet

Elektrivoolu tekkimine poolis, kui pooli läbiv magnetvälja voog muutub. Simulatsioonis saab liigutada püsimagnetit poolis ning jälgida tekkiva elektrivoolu tugevust ja suunda. PHET

Kõiki neid katseid võib läbi viia ka simulatsioonides. Viitame siin ühte sellist. Vaadake ja kontrollige, elu või simulatsiooni, teie valik.

Magnetvoo mõiste
J.2.24 Magnetvoo sõltuvus nurgast β magnetvälja suuna (B) ja juhtmekeeru pinna normaali (n) vahel: a) β = 0, b) 0 < β < π/2, c) β = π/2.

Ülalkirjeldatud katsete tulemuste kokkuvõtlikuks esitamiseks on võetud kasutusele füüsikaline suurus nimega magnetvoog. Magnetvoog näitab, millisel määral läbivad magnetvälja jõujooned vaadeldavat pinda selle pinna suuruse ja asendi tõttu magnetväljas. Piltlikult öeldes näitab magnetvoog pinda läbivate jõujoonte arvu. Loomulikult on see arv eelkõige määratud jõujoonte tihedusega, mida teatavasti iseloomustab magnetinduktsioon. Mingit kindlat pinda läbib joonte suurema tiheduse korral rohkem jõujooni. Magnetvoog läbi vaadeldava pinna on võrdeline magnetinduktsiooniga . Samas läheb pinnast rohkem jõujooni läbi ka siis, kui pind ise on suurem ning jääb seetõttu jõujoontele rohkem "ette". Magnetvoog on võrdeline pinna pindalaga . Jõujoonte kindla tiheduse () ja pinna pindala () korral sõltub pinda läbiv magnetvoog B-vektori suunast pinna suhtes. Kui pind on -vektoriga risti (), siis läbib pinda suurim arv jõujooni (J.2.24, a). Sel korral on tegemist suurima magnetvooga. Kui nurk B-vektori ja pinna normaali vahel erineb nullist, siis on pinda läbivate jõujoonte arv väiksem (J.2.24, b). Seega on väiksem ka magnetvoog. Kui aga nurk on täisnurk (), siis on magnetvälja jõujooned pinnaga paralleelsed. Mitte ükski jõujoon ei läbi pinda. Magnetvoog on null (J.2.24, c). Magnetvoog on maksimaalne nulliga võrduva nurga  korral ning saab ise nulliks, kui see nurk on täisnurk. Seega on magnetvoog võrdeline koosinusega nurgast  magnetvälja suuna ja pinna normaali

Kõik ülaltoodu võib kokku võtta magnetvoo defi­nit­siooni­valemisse

Magnetvoog on skalaarne (suunata), kuid algebraline suurus. Magnetvoo algebralisus tähendab seda, et sõltuvalt magnetvälja suunast võib voog olla nii positiivne kui ka negatiivne suurus. Magnetvoo mõõtühikuks SI-süsteemis on üks veeber (). Üks veeber on magnetvoog, mis läbib 1 m2 suurust magnetvälja suunaga ristuvat pinda, kui välja magnetinduktsioon on . Ühe veebri defineerimisel kasutatakse niisiis valemi 2.5 erijuhtu, mil , seega ja järelikult , millest

Faraday induktsiooniseadus

Induktsioonivool ja ka vastav elektromotoorjõud %i on seda suuremad, mida kiiremini (s.t mida lühema ajavahemiku jooksul) magnetvälja muutus toimub. Kasutades magnetvoo mõistet, võib kõigi Faraday katsete tulemuse üldistada kujul

mis näitab, et induktsiooni elektromotoorjõud on võrdeline magnetvoo muutumise kiirusega. See ongi elektromagnetilise induktsiooni põhiseadus ehk lihtsalt Faraday induktsiooniseadus. Mõistagi on jutt magnetvoost läbi pinna, mis on piiratud vaadeldava juhtmekeeruga. Pooli korral liituvad üksikutes keerdudes tekkivad elektromotoorjõud. Siis tuleb magnetvoo all mõista voogu läbi summaarse keerdudest piiratud pinna ning arvestada ka keerdude magnetväljade vastastikust mõju. Miinusmärk näitab toimuva muutuse suunda.

Võrdetegur sõltub mõõtühikute süsteemi valikust. SI-s ja järelikult

SI korral ei ole induktsiooni elektromotoorjõud mitte ainult võrdeline vaid lausa arvuliselt võrdne magnetvoo muutumise kiirusega. Ühikusüsteem SI ongi loodud nõnda, et elektromagnetilise induktsiooni seaduses võrdetegur puuduks. Just seetõttu ilmub selles süsteemis Coulomb'i seadusesse ühikut omav võrdetegur.

Kasutades Faraday induktsiooniseadust kujul 2.7 , võime magnetvoo ühiku defineerida seosest

Vastavalt on üks veeber selline magnetvoo muut, mis ühe sekundi jooksul toimudes tekitab induktsiooni elektromotoorjõu üks volt ().

Näide 2.2.

Ülesannet selgitav joonis

Papptorukesele keriti 400 keerust koosnev juhtmepool. Pooli otste külge ühendati voltmeetrina toimiv multimeeter ehk tester, mille takistuse võib lugeda pooli takistusega võrreldes lõpmata suureks. Seega toimis pool vooluallikana, mille EMJ oli praktiliselt võrdne testril tekkiva pingega. Kui pooli sisse pisteti 1 sekundi jooksul püsimagnet ristlõikepindalaga , siis hälbis testri osuti väärtuseni . Kui palju muutus magnetvoog ühes keerus? Kui suur on magnetinduktsioon selle püsimagneti sees?

Lahendus

Andmed





Arvutused:
Pooli keerud toimivad jadamisi ühendatud vooluallikatena, mille põhjal induktsiooni EMJ kogu poolis

,

kus – elektromotoorjõud ühes keerus ja  – keerdude arv.

Faraday induktsiooni­seadust

võime siin kasutada ilma miinusmärgita, sest meid huvitab vaid muutuse suurus, mitte suund.

Magnetvoo muut:

.

Kuna magnetvoo algväärtus on null, siis võrdub lõppväärtus muuduga . Püsimagneti magnetväli on paralleelne pooli teljega ning on seega suunatud piki keerdude ühist normaali. Järelikult , ja . Sellest

Vastus: Magnetvoog ühes keerus muutus 25 mikroveebri võrra. Püsimagneti magnetinduktsioon oli 0,5 teslat.

Kokkuvõte

Magnetvoog näitab, millisel määral läbivad magnetvälja jõujooned vaadeldavat pinda. Magnetvoog avaldub kujul

kus on magnetinduktsioon, – pinna pindala ning – nurk pinna normaali ja magnetvälja su

Üks veeber () on magnetvoog, mis läbib suurust magnetvälja suunaga ristuvat pinda, kui välja magnetinduktsioon on . Seega

Kehtib Faraday induktsiooniseadus, mille kohaselt juhtmekontuuris tekkiv induktsiooni elektromotoorjõud on võrdeline magnetvoo muutumise kiirusega. Ühikusüsteemis SI:

kus on magnetvoo muutus kontuuris ja – ajavah

Kontrollküsimused
Millised on kolm peamist viisi elektrienergia saamiseks elektromagnetilise induktsiooni teel? Uurigem valemeid 2.5 ja 2.7.
Kas magnetvoo definitsioonivalemis võiks koosinuse asemel esineda ka siinus? Millist nurka tuleks siis kasutada?
Maanteel liikuvate autode loendamiseks paigutatakse teekatte alla keskmise auto mõõtmetega juhtmekontuur, mille otstel paikneb vooluimpulsse registreeriv seade. Selgitage niisuguse loenduri tööpõhimõtet. Arvestagem, et autokered on valmistatud terasest, mis on ferromagneetik.
Kuidas võiks liikluspolitsei eelmises probleemis kirjeldatud loendureid kasutada autode kiiruse mõõtmiseks?
Elektromagneti südamik soojeneb, kui voolu magneti mähises korduvalt sisse ja välja lülitada. Miks on see nii?
Sisestusmehhanism veab magnetkaarti pangaautomaadi sisse kindla kiirusega. Milleks see vajalik on?
Jalgratta spidomeetri (kiirusemõõtja) andur kinnitatakse esikahvli külge nii, et ühe kodara küljes paiknev väike püsimagnet mööduks ratta igal tiirul andurist väga lähedalt (vt joonist). Selgitage spidomeetri tööpõhimõtet.
KontrollküsimusedLisamaterjalid
Lenzi reegel. Induktsiooniseaduse rakendused
Lenzi reegel

Lugedes veel kord Faraday katsete kirjeldusi punktis 2.3, märkame, et magnetvälja kasvu korral sisaldavad need hulgaliselt sõna vastupidine. Näiteks püsimagneti lähendamisel juhtmepoolile on induktsioonivoolu magnetväli vastassuunaline püsimagneti väljale, mis voolu esile kutsus. Induktsioonivoolu väli takistab magnetvälja kasvu. Poolis tekkiva induktsioonivoolu suund on vastupidine voolu suunale teises poolis, mida esimesele lähendatakse. Voolu sisselülitamine ühes juhtmes indutseerib vastupidise suunaga voolu naaberjuhtmes.

Heinrich Friedrich Emil Lenz (1804 – 1865)

Magnetvälja kahanemise korral on aga kõik teisiti. Püsimagneti eemaldamisel poolist on induktsioonivoolu magnetväli samasuunaline püsimagneti väljaga ning takistab magnetvälja kahanemist. Juhtmepoolide eemaldamisel teineteisest on ühes poolis indutseeritav vool samasuunaline vooluga teises poolis. Voolu väljalülitamine ühes juhtmes indutseerib samasuunalise voolu naaberjuhtmes. Seega soodustab induktsioonivool alati olemasoleva olukorra säilimist.

Elektromagnetiline induktsioon on alalhoidlik ehk konservatiivne nähtus. Seda asjaolu märkas esimesena Emil Lenz (1804-1865), Tartust pärit Vene füüsik, rahvuselt baltisakslane. Kogu maailm tunnustab Emil Lenzi teeneid induktsioonivoolu suunda määrava reegli või seaduse formuleerijana. Seetõttu esinebki nimetatud seadus füüsikaõpikutes Lenzi reegli või Lenzi seaduse nime all.

Järgnevalt toome ära Lenzi reegli mõned sõnastused:

  1. induktsioonivoolu suund on selline, et tema magnetväli kompenseeriks muutust, mis voolu põhjustab;
  2. induktsioonivool toimib alati vastupidiselt seda voolu esile kutsuvale põhjusele;
  3. kui välismõju tingib magnetvoo kasvu kontuuris, siis on induktsioonivoolu magnetväli välise magnetvälja suhtes vastassuunaline (takistab kasvu). Kui aga välismõju põhjustab magnetvoo kahanemist, siis on induktsioonivoolu magnetväli välise magnetväljaga samasuunaline (takistab kahanemist).

Lenzi reegli levinuim sõnastus on (a), lühimaks võib pidada varianti (b), kõige üksikasjalikumaks aga võimalust (c).

Lenzi reegli analoogiks mehaanikas on väide, et stabiilsele süsteemile mõjuv jõud on suunatud tasakaaluasendi poole. Kui me viime näiteks pendli tasakaaluasendist välja, siis tekib otsekohe jõud , mis takistab niisugust muutust. See jõud püüab viia pendlit tagasi tasakaaluasendisse. Samamoodi on lood kuulikesega, mis asetseb nõgusa põhjaga kausis. Kuulikese väljaviimisel kausi madalaimast punktist tekib jõud, mis lükkab kuulikest tagasi tasakaaluasendisse, see tähendab, kausi põhja.

Mõnikord öeldakse ka, et Lenzi reegel väljendab energia jäävuse seadust. Kujutlegem, mis juhtuks siis, kui Lenzi reegel ei kehtiks ja mingist muutusest tingitud induktsioonivool soodustaks muutuse jätkumist. Näiteks püsimagneti lähendamisel juhtmepoolile tekiks poolis sel juhul vool, mille magnetväli oleks püsimagneti väljaga samasuunaline. Poolile mõjuv magnetväli tugevneks ja "tagurpidise" Lenzi reegli kohaselt kasvaks vool seeläbi veelgi. Voolu suurenemine põhjustaks selle kasvu üha kiiremat jätkumist. Tegemist oleks eimillegi arvelt töötava vooluallikaga, niisiis perpetuum mobile'ga. Niisugust masinat ei saa aga energia jäävuse seaduse kohaselt olemas olla.

Lenzi reeglit väljendab induktsiooniseaduses (valemis 2.9) sisalduv miinusmärk. Kui näiteks juhtmekeerdu läbiv magnetvoog kasvab ( valemis 2.9), siis loetakse induktsiooni elektromotoorjõudu ja vastavat voolutugevust kokkuleppeliselt negatiivseteks, kuna induktsioonivoolu magnetväli on keerus mõjuvale väljale vastassuunaline (takistab magnetvoo kasvu). Kui aga magnetvoog juhtmekeerus kahaneb ja tema muut on negatiivne (), siis on need kaks välja samasuunalised.

Induktsioonivool püüab kahanevat magnetvoogu alal hoida. Seetõttu loetakse induktsiooni elektromotoorjõudu ja voolutugevust positiivseteks.

Katse 2.4.
Eksperimendi skeem, Lenzi reegel

Kui me oleme eespool (p.2.3.1) kirjeldatud viisil valmistanud raudsüdamikuga juhtmepooli, siis saame Lenzi reegli kehtivust üpris lihtsalt kontrollida. Selleks püüame leida vasest, hõbedast või alumiiniumist rõnga, millest kasutatava pooli südamik (raudpolt) takerdumata läbi mahub. Hästi sobib näiteks kerge hõbesõrmus. Paigutame raudsüdamikuga juhtmepooli laual mingile alusele, nii et südamik ulatuks poolist paari sentimeetri pikkuselt välja. Paneme metallrõnga kahe niidiga laualambi või mingi muu raami külge rippuma. Seejuures peab raudsüdamik ulatuma rõnga sisse. Kui me nüüd tekitame südamikuga poolis taskulambipatarei abil voolu, siis nihkub rõngas poolist eemale, kuna rõngas tekkiv induktsioonivool takistab Lenzi reegli kohaselt poolist pärineva magnetvoo kasvu. Seetõttu on induktsioonivool rõngas pooli voolule vastassuunaline (J.2.25, a), vastandlike suundadega voolud aga tõukuvad (p.1.4.2). Loomulikult ei jää rõngas ,,eemaletõukunud“ asendisse. Kui pooli magnetväli enam ei kasva, siis langeb induktsioonivoolu tugevus nullini ja rõngas naaseb raskusjõu mõjul tasakaaluasendisse. Kui me nüüd poolis voolu katkestame (eemaldame patarei), siis poolist pärinev magnetvoog kahaneb. Induktsioonivoolu magnetväli üritab seda aga Lenzi reegli kohaselt alal hoida (takistab kahanemist). Nüüd on voolude magnetväljad ja seega ka voolud ise samasuunalised (J.2.25, b). Samasuunalised voolud aga tõmbuvad. Seetõttu nihkub rõngas pooli poole. Kui poolist pärinev magnetvoog on saanud nulliks (enam ei kahane), siis induktsioonivool katkeb ja rõngas naaseb jällegi raskusjõu mõjul tasakaaluasendisse.

 

Induktsiooniseaduse rakendusi
J.2.26 Pöörisvooluringid paksus ja õhukeses metallplaadis.

Ülalkirjeldatud viisil tekivad induktsioonivoolud mitte ainult rippuvas rõngas, vaid ka suvalise kujuga metallkehas, millele mõjuv magnetväli piisavalt kiiresti muutub. Selliseid voolusid nimetatakse pöörisvooludeks, kuna neid tekitab elektromagnetilisel induktsioonil esinev pööriselektriväli. Kui mingi metallkeha magnetväljas liigub, siis pöörisvoolude olemasolu pidurdab seda liikumist. Keha kui terviku liikumise kineetiline energia läheb üle laengukandjate liikumise energiaks selles kehas.

Võib ka öelda, et laengukandjad liiguvad pööriselektrivälja energia arvel. Elektritakistuse olemasolu tõttu eraldub see energia aga soojusena. Kineetiline energia muundub soojuseks nii nagu tavalisel hõõrdumisel.

Kokkuvõte

Lenzi reegel

Induktsioonivool soodustab alati olemasoleva olukorra säilimist. Kehtib Lenzi reegel, mille kohaselt induktsioonivool toimib alati vastupidiselt voolu esile kutsuvale põhjusele.

Lenzi reegel ja Faraday induktsiooniseadus

Lenzi reeglit väljendab miinusmärk Faraday induktsiooniseaduses.

Kontrollküsimused
Vanemate autode spidomeeter sisaldab rattateljega mehaaniliselt ühendatud püsimagnetit ja selle vastas paiknevat metallketast. Ketas on omakorda ühendatud spidomeetri osutiga. Mida kiiremini pöörleb püsimagnet, seda suurema nurga võrra pöördub samas suunas ketas ja vastavalt ka spidomeetri osuti. Ketta küljes paikneb tagastusvedru, mis ketta pöördumisel pinguldub. Püsimagneti peatumisel toob see vedru ketta algasendisse tagasi. Miks püüab püsimagnet ketast "kaasa vedada"?
Tugevat püsimagnetit on raske liigutada piki alumiiniumplaati, aga magnet plaadi külge kinni ei jää. Miks on see nii?
KontrollküsimusedLisamaterjalid
Induktiivsus ja mahtuvus
Endainduktsiooni elektromotoorjõud
Öeldakse, et gaasilekke korral ei tohi ühelgi juhul ... teha mida? Missuguseid ohuallikaid näete selles toas?

Oleme juba korduvalt täheldanud induktsiooni elektromotoorjõu tekkimist poolis, mille keerde läbivat magnetvoogu väljastpoolt muudetakse. Näiteks katsetes kahe pooliga (p.2.4.1) toimub see teises poolis voolu sisse- või väljalülitamise teel. Kuid ka magnetvälja tekitavas poolis esineb voolu kasvul või kahanemisel magnetvoo muutus. See muutus tekitab induktsiooni elektromotoorjõu, mis Lenzi reegli kohaselt takistab muutust ning järelikult pidurdab voolu kasvu või kahanemist. Niisiis võib juhtmes induktsiooni elektromotoorjõu tekkimiseks vajalik magnetvoo muutus olla põhjustatud ka voolu muutumisest juhtmes endas. Elektromagnetilise induktsiooni nähtuse sellist alaliiki nimetatakse endainduktsiooniks.

Katse 2.5.
J.2.27 Katse 2.5 skeem.

Endainduktsiooni olemasolu kindlakstegemiseks võib kasutada Faraday katsete (p.2.3) korraldamiseks valmistatud pooli. Ühendame südamikuta pooli otste külge uue lapiku taskulambipatarei. Kui me voolu ahelas katkestame, siis kuuleme praksatust ja märkame katkestuskohas nõrka elektrisädet. Säde on paremini jälgitav, kui teeme katset hämaras või koguni pimedas toas.

Järelikult tekib ahelas voolu katkestamisel täiendav pinge, mis püüab voolu säilitada.

Tekkiv pinge rakendub katkestuskohas, sest just seda kohta on liikuvatel laengukandjatel kõige raskem läbida. Seal tuleb teha kõige rohkem tööd. Paigutame nüüd pooli sisse raudpoldi ja kordame katset. Näeme, et tekkiv säde on oluliselt tugevam. Vahemik, milles õhk hakkab elektrit juhtima, on tunduvalt laiem.

Induktsioonisäde

Arvestame, et sädelahendus tekib õhus ühe kindla elektrivälja tugevuse juures ().

Konstantsel väljatugevusel E on kahe punkti vaheline pinge aga seda kõrgem, mida suurem on nende punktide vahekaugus (valem ). Seega tekib raudsüdamikuga pooli korral suurem pinge.

Kuna just raudsüdamikuga poolis tekib suurem magnet-induktsioon, siis võib väita, et see pinge sõltub magnetinduktsioonist poolis või pooli keerde läbivast magnetvoost. Pool hakkab voolu muutumisel toimima vooluallikana, mille elektromotoorjõudu nimetatakse endainduktsiooni elektromotoorjõuks. Vooluringi sulgemisel on pooli kui vooluallika polaarsus patarei omale vastupidine (J.2.27, pool takistab voolu kasvu). Vooluringi katkestamisel aga on pool ja patarei ühesuguse polaarsusega (pool püüab voolu alal hoida).

Endainduktsioon võib esineda ka meie igapäevases kasutuses olevates elektriseadmetes, näiteks küttekehades on küttetraat tavaliselt spiraaliks keritud. Seega on nende väljalülitumisel võimalik ka sädeme tekkimine, nagu nägime katses 2.5. Selle ärahoidmiseks keritakse traat joonisel kujutatud viisil - vastandsuunaliste vooludega poolides on magnetväli ja seega ka endainduktsioon minimaalsed.

Katsest 2.5 näeme, et endainduktsiooni nähtus avaldub inertsina laetud osakeste suunatud liikumisele. Endainduktsiooni esinemise korral võtab elektrivoolu tekitamine ja ka peatamine oluliselt rohkem aega võrreldes juhuga, mil endainduktsioon puudub. Tulemus näitab, et sädet tekitav pinge on (vähemasti osaliselt) põhjustatud voolu katkestamisest poolis. Vool raudsüdamikuga pooli sisaldavas ahelas käitub nagu raske raudteerong. Sellist rongi ei saa hetkeliselt liikuma panna ega ka järsult peatada. Palju kuuldud kurvad lood õnnetustest raudteeületuskohtadel ongi ju õigupoolest selle tagajärg, et rasket rongi pole võimalik hetkeliselt seisma jätta. Kuid miks vool mõnes ahelas käitub raske rongina, mõnes aga mitte? Millal esineb endainduktsioon? Ka nendele küsimustele annab vastuse äsja korraldatud katse. Endainduktsiooni tekkimiseks peab vooluga kaasnema tugev magnetväli, mis suudab samas mõjutada ka voolu ennast. Täpsemalt öeldes peab vool vaadeldavas juhtmesüsteemis tekitama suure magnetvoo, sest just magnetvoo muutumine kutsub esile induktsiooni elektromotoorjõu. Raudsüdamikuga juhtmepooli korral on magnetvoog oluliselt suurem kui tühjas poolis.

Seega on endainduktsiooni esinemine määratud voolu suutlikkusega tekitada antud juhtmesüsteemis magnetvoogu. Juhtmesüsteemi vastavate omaduste kirjeldamiseks on kasutusel füüsikaline suurus, mida nimetatakse juhi induktiivsuseks.

Induktiivsuse mõiste

Ülalpool kirjeldatud katse käigus tekkis raudsüdamikuga pooli sisaldavas vooluringis suur endainduktsiooni elektromotoorjõud. Raudsüdamiku puudumisel oli see aga väiksem. Näeme, et juhi (või vooluringi osa) induktiivsust võib määratleda mingil kindlal voolu muutusel tekkiva endainduktsiooni elektromotoorjõu kaudu. Juhi induktiivsus  näitab, kui suur endainduktsiooni elektromotoorjõud  tekib selles juhis voolutugevuse ühikulisel muutumisel ajaühiku jooksul

Poole kasutatakse tehnikas väga laialdaselt ning nende välisilmeid võib olla väga erinevaid. Aga põhiparameeter suvalise pooli iseloomustamiseks on ikka ja alati induktiivsus.

Absoluutväärtuse märk selles valemis näitab, et induktiivsust vaadeldakse kokkuleppeliselt vaid positiivse suurusena. Voolutugevuse muut ja endainduktsiooni elektromotoorjõud võivad aga olla ka negatiivsed. Siin ja allpool asume kasutama elektromagnetismi füüsikas üldlevinud kokkulepet, mille kohaselt mingit kindlat või konstantset laengut, pinget, voolutugevust vms elektrilist suurust tähistatakse suurtähtedega (, ), vastavaid ajas muutuvaid suurusi aga väiketähtedega (, , ). Kuna induktiivsuse mõiste eeldab olemuslikult voolu muutumist ajas, siis on korrektne tähistada voolutugevust väiketähega (). Voolutugevuse muudu ja sellele vastava ajavahemiku suhet valemis 2.8 võib nimetada voolu muutumise kiiruseks. Seega näitab juhi induktiivsus meile, kui suur endainduktsiooni elektromotoorjõud tekib selles juhis, kui voolutugevus temas muutub ühikulise kiirusega.

Avaldades valemist 2.8 endainduktsiooni elektromotoorjõu ning kasutades Lenzi reeglit väljendavat miinusmärki, saame

Võrdleme nüüd valemit 2.9 Faraday induktsiooniseadusega (valem 2.7). Seejuures arvestame, et endainduktsioon on elektromagnetilise induktsiooni erijuht, mistõttu ja 2.9 esinevate murdude väärtused ja seega ka nende murdude lugejad on võrdsed:

ehk

(2.10)

Juhi induktiivsus näitab meile, kui suure magnetvoo muutuse tekitab selle juhi korral ühikuline voolu muutus. Veelgi lihtsamalt öeldes näitab induktiivsus vaadeldava juhtmesüsteemi inertsust temas toimuvate voolu muutuste suhtes.

Endainduktsiooni elektromotoorjõu sõltuvuse voolu muutumise kiirusest avastas aastal 1832 Ameerika füüsik Joseph Henry (1797 – 1878). Seetõttu on valem 2.9 ka tuntud Henry seaduse nime all. Kuna Henry jõudis induktsiooniseaduseni Faraday'st sõltumatult, siis nimetatakse elektromagnetilise induktsiooni seadust mõnikord ka Faraday-Henry seaduseks. J. Henry järgi on oma nime saanud induktiivsuse SI-ühik henri (). Valemite 2.8 ja 2.10 põhjal

Induktiivsuse definitsioonina võib vaadelda nii valemit 2.8 kui ka valemit 2.10. Paraku peitub valemis 2.10 tema välisele lihtsusele vaatamata väärtõlgenduse oht. Nimelt on seal sisalduv magnetvoog valemi 2.6 abil leitav vaid ühe juhtmekeeru korral. Juhtmepooli keerud aga tugevdavad vastastikku üksteise magnetvälja. Resultantvälja jõujooned läbivad pooli kõiki keerde. Magnetinduktsioon poolis ja seega ka magnetvoog läbi keerdude on seda suuremad, mida rohkem keerde on poolil pikkusühiku kohta. Vastavalt on sel juhul suurem ka pooli induktiivsus. Valemis 2.10 esinevat magnetvoogu nimetatakse siis pooli kogumagnetvooks ehk aheldusvooks ja selle suuruse väljaarvutamine on üldjuhul keeruline protseduur.

Elektrimahtuvus. Kondensaatorid

Peagi (p2.7.2) veendume selles, et induktiivsus kirjeldab kehade süsteemi võimet säilitada endas elektrivoolu ja seeläbi tekitada magnetvälja. Mõistagi on kasutusel ka füüsikaline suurus, mis iseloomustab kehade süsteemi võimet salvestada endasse laengut ja seeläbi tekitada elektrivälja. Kõnealuseks suuruseks on elektrimahtuvus, mida me edaspidi nimetame lihtsalt mahtuvuseks.

Kallates vedelikku ühekõrgustesse kuid erineva läbimõõduga klaasidesse, näeme otsekohe, et laiemasse klaasi mahub rohkem vedelikku. Suurema läbimõõduga anumal on suurem põhja pindala ja seega ka ruumala (J.2.28). Samamoodi on lood erinevate elektrit juhtivate kehade laadimisel. Ühele kehale "mahub" rohkem laengut kui teisele. Järelikult on mõtet võtta kasutusele keha laadumisvõimet kirjeldav suurus, mida nimetatakse keha mahtuvuseks.

Rangelt võttes on mahtuvus alati kahe keha omavaheline mahtuvus. Andes ühele kehale mingi laengu, peame selle mingilt teiselt kehalt ära võtma, kuna kehtib laengu jäävuse seadus.

Vaatleme kahte algselt neutraalset keha. Kui me võtame ühelt kehalt ära laengu ja anname selle teisele kehale, siis omandab esimene keha laengu ja teine . Kehade vahel tekib elektriväli ja seega ka potentsiaalide vahe (pinge) (J.2.29). Kuna potentsiaal on võrdeline teda tekitava laenguga (valem 1.22), siis teostades sama toimingu laenguga , tekitame kehade vahel pinge . Peagi märkame, et laengu ja pinge jagatis jääb kõigis sellelaadsetes katsetes muutumatuks, antud kehade süsteemi iseloomustavaks suuruseks. See ongi vaadeldavate kehade omavaheline mahtuvus.

Kahe keha omavaheline mahtuvus näitab, kui suure laengu viimisel ühelt kehalt teisele tekib kehade vahel ühikuline pinge. Mahtuvuse leidmiseks tuleb üle viidud laeng jagada tekkiva pingega

(2.12)

Saavutamaks mahtuvuse definitsiooni suuremat sarnasust induktiivsuse määratlusega (2.10) ja rõhutamaks ajalise muutuse tähtsust võib üleviidavat laengut Q vaadelda keha laengu lõppväärtuse ja algväärtuse  vahena: . Siis on keha iseloomustav laeng meile mehaanikast tuntud koordinaadi rollis ja üleviidav laeng  vastab kahe koordinaadi vahele ehk teepikkusele. Vaadeldes keha laengut ajast sõltuva suurusena , peame ajast sõltuvana käsitlema ka kahe keha vahel tekkivat pinget . Niimoodi võtab kahe keha omavahelise mahtuvuse definitsioon kuju

(2.13)

J.2.30 Laengu -Q indutseerimine kondensaatori maandatud plaadile.

Nüüd saab meile selgeks elektriseadmete kaitsemaanduse põhimõte, millest oli juttu juba põhikooli Elektriõpetuses. Maandamisel ühendatakse seadme metallkorpus juhtme abil Maaga. See kaitseb seadme kasutajat elektrilöögi eest juhul, kui seadme korpus satub rikke tagajärjel Maa suhtes pinge alla. Kaitsemaandus juhib seadme korpusele sattunud laengu ära Maasse. Maa on aga niivõrd suure mahtuvusega keha, et talle võib anda kuitahes suure laengu, ilma et tema potentsiaal märgatavalt muutuks. Laeng liigub Maasse läbi maandusjuhtme, mitte aga läbi seadme kasutaja keha. Seega on mingi keha maandamine samaväärne suure augu tegemisega niisuguse anuma põhja, millesse vesi mitte mingil juhul koguneda ei tohi. Kui ka vesi eksikombel satub anumasse, jookseb vesi läbi augu otsekohe maha.

Kehade süsteemi, mis on loodud mingi kindla mahtuvuse saamiseks, nimetatakse kondensaatoriks. Lihtsaim kondensaator koosneb kahest elektrit juhtivast plaadist ehk kattest, mille vahel paikneb dielektrikukiht. Kondensaatori mahtuvus näitab, kui suure laengu andmisel ühele plaadile suureneb plaatidevaheline pinge ühe ühiku võrra. Seega on kondensaatori mahtuvus sisuliselt tema plaatide omavaheline mahtuvus (valem 2.12 või 2.13).

Ka kondensaatoreid on välimuse poolest väga erinevaid.

Kondensaatori laadimiseks reeglina ei võeta laengut ühelt plaadilt, et anda seda teisele plaadile. Piisab vaid ühe plaadi laadimisest. Laetud plaadi elektrivälja mõjul hakkavad laengukandjad teisel plaadil ja sellega ühendatud juhtides liikuma. Näiteks laengu andmisel kondensaatori ühele plaadile omandab teine (algselt neutraalne) plaat sama suure laengu , sest just siis tasakaalustavad plaatide elektriväljad väljaspool kondensaatorit vastastikku teineteist. Samanimeliste laengute tõukumise tõttu lahkub laeng teiselt plaadilt. Laengu saab kergesti teisele plaadile tuua siis, kui plaat on maandatud (J.2.30) ja laeng võib lahkuda Maasse.

Ka vooluringis paikneva kondensaatori korral saab laeng teiselt plaadilt alati ära minna. Järelikult on ühe plaadi laadimine samaväärne laengu üleviimisega ühelt plaadilt teisele.

Mahtuvuse ühik SI-süsteemis kannab M. Faraday auks nime farad. Üks farad () on sellise keha mahtuvus, millele tuleb anda laeng üks kulon, selleks et suurendada tema potentsiaali ühe voldi võrra. Kondensaatori mahtuvus on , kui laengu viimine ühelt plaadilt teisele tekitab plaatide vahel pinge . Seega

Kuna üks kulon on väga suur laeng, siis ka üks farad on väga suur mahtuvus. Seetõttu kasutatakse praktikas enamasti mikro-, nano- ja pikofaradeid (, , ).

Kondensaatoreid võib leida kõikvõimalikes elektroonikaseadmetes, alustades mikrofonidest ning lõpetades näiteks satelliitidega. Esimese kondensaatori valmistasid teineteisest sõltumatult sakslane Ewald von Kleist (1700-1748) ja hollandlane Pieter van Musschenbroek (1692-1761). Kondensaatori leiutamist on õigem nimetada avastuseks, sest see toimus täiesti juhuslikult. Uurides vee elektriseerumist, tegi Kleist 1745. aastal järgmise katse. Ta laadis raudnaela, mis ulatus välja veega täidetud klaaspudelist. Hoides pudelit ühes käes, puudutas ta kogemata teise käega naela ja sai er akordselt tugeva elektrilöögi. Kleist mõistis, et pudelisse oli kogunenud väga suur laeng. Pudelkondensaatori üheks katteks oli vesi, teiseks aga katsetaja käsi. Pudeli klaaskest toimis dielektrikuna.

Analoogilise katse teostas Musschenbroek 1746. a. hollandi linnas Leidenis. Kuna laiemalt tuntuks sai just nimelt tema tulemus, siis hakati kõiki sellelaadseid laengut koguvaid klaasanumaid nimetama leideni purkideks.

Leideni purgi konstruktsioonis asendati vesi peagi anuma sisepinda katva metallkilega. Ka välimine kate valmistati metallfooliumist. Nii saadi leideni purk, mis on kooli füüsikakabinetis kasutusel tänapäevani.

Kokkuvõte

Endainduktsioon

Endainduktsiooni nähtuseks nimetatakse elektromagnetilise induktsiooni alaliiki, mille korral magnetvoo muutus on põhjustatud voolu muutusest vaadeldavas juhtmes endas.

Juhi induktiivsus

Juhi induktiivsus näitab, kui suur endainduktsiooni elektromotoorjõud tekib selles juhis voolutugevuse ühikulisel muutumisel ajaühiku jooksul. Induktiivsus näitab ühtlasi kogumagnetvoo muutust juhis juhti läbiva voolu tugevuse ühikulisel muutumisel.

Kahe keha omavaheline mahtuvus

Kahe keha omavaheline mahtuvus näitab, kui suure laengu viimine ühelt kehalt teisele tekitab kehade vahel ühikulise pinge.

Keha mahtuvus

Keha mahtuvus näitab, kui suure laengu andmisel kehale tekib keha potentsiaali ühikuline muutus.

Mahtuvuse mõõtühik Farad

Üks farad (1 F) on sellise keha mahtuvus, millele tuleb anda laeng üks kulon, selleks et muuta tema potentsiaali ühe voldi võrra.

Kondensaator

Kondensaatoriks nimetatakse kehade süsteemi, mis on loodud mingi kindla mahtuvuse saamiseks.

Kontrollküsimused
Lennujaama turvavärav on oma olemuselt juhtmepool, mille otstel paikneb voolu muutusi registreeriv seade. Kuidas teeb turvavärav kindlaks metalleseme olemasolu reisija taskus? Miks ei suuda turvavärav avastada plastikpommi?
Kuidas muutub algselt sirge juhtme induktiivsus selle juhtme kerimisel pooliks? Miks on muutus just selline?
Milline suurus mängib veeanuma täitmisel sama rolli mis mahtuvus keha laadimisel? Pinge osas on veetaseme kõrgus.
KontrollküsimusedLisamaterjalid
Elektromagnetvälja energia
Elektrivälja energia

Elektrivälja olemasolu tähendab teatavasti jõu tekkimise võimalikkust. Analoogiliselt väljendab termin elektrivälja energia seda, et laetud keha võib elektriväljas omada energiat. Asume uurima, kuidas sõltub elektrivälja energia väljatugevusest või potentsiaalist. Kõige lihtsam on seda teha homogeense välja korral, mis täidab kondensaatori plaatide vahelist ruumi.

Energia olemasolu laetud kondensaatoril pole raske näidata. Kondensaatori lühistamisel tekkiv säde võib olla välguna ere ning kostev pauk kõrvulukustav. Suure mahtuvusega kondensaatori tühjendamist läbi oma keha ei tasu südamehaigetel ja nõrganärvilistel üldse proovida.

Laetud kondensaatori energia on aga tegelikult tema plaatide vahelist ruumi täitva elektrivälja energia. Paremini mõistame seda siis, kui arvestame, et laetud kondensaator sarnaneb kõrge täidetud veenõuga. Avades nõu põhjas oleva kraani, tekitame veejoa. Juga suudab teha tööd, näiteks panna liikuma vesiratta. Seda tööd tehakse mitte veenõu, vaid vee raskusjõu potentsiaalse energia arvelt. Viimane on aga oma sügavamalt olemuselt Maa gravitatsioonivälja energia. Täpselt niisamuti ei tee tööd mitte kondensaator, vaid temas sisalduv elektriväli.

Laetud kondensaator suudab teha tööd tänu sellele, et tööd on tehtud ka tema laadimisel. Kuna katetevaheline pinge muutub laadimise käigus, siis ei saa me tehtavat tööd otsekohe leida valemist 1.23

sest me ei tea, missugust pinget kasutada. Mida suurem on kondensaatori katetele juba kogunenud laeng, seda suurem on pinge plaatide vahel ja seda rohkem tuleb kondensaatori täiendaval laadimisel tööd teha.

Selleks et leida kogu tööd, mis tehakse kondensaatori laadimisel, tuleb katetele antud laengut korrutada mitte pinge lõppväärtusega , vaid laadimisel esineva keskmise pingega. Pinge kondensaatoril kasvab võrdeliselt laenguga alates nullist kuni lõppväärtuseni . Keskmine pinge kui pool algväärtuse ja lõppväärtuse summast on seega . Laadimisel tehtud töö või kondensaatoris tekitatud elektrivälja energia avaldub kujul

(2.18)

kus kogulaeng on mahtuvuse definitsiooni põhjal asendatud korrutisega ning pinge rollis esineb laadimisprotsessi keskmine pinge .

Oleme leidnud kondensaatori elektrivälja energia sõltuvuse plaatidevahelisest pingest ehk ühe plaadi potentsiaalist teise suhtes. Selle energia võib avaldada ka väljatugevuse kaudu. Kuna

siis plaatide kindla vahekauguse korral on pinge  ja väljatugevus  omavahel võrdelised. Seega on elektrivälja energia võrdeline ka väljatugevuse ruuduga.

Magnetvälja energia

Oleme juba märkinud, et induktiivsuse osa magnetvälja füüsikas sarnaneb mahtuvuse rolliga elektrivälja käsitlemisel. Mõlemad suurused kirjeldavad mingi keha omadusi. Mahtuvus näitab, kui suur on kondensaatori laengu muutus katetevahelise pinge ühikulisel muutumisel, induktiivsus aga näitab, kui suur on magnetvoo muutus juhtmepoolis, kui seda pooli läbiva voolu tugevust ühiku võrra muudetakse.

Kondensaatori ja pooli rollide sarnasuse põhjal on alust arvata, et energiat ei oma mitte ainult laetud kondensaator vaid ka vooluga pool. Samale järeldusele viib meid katse 2.5 punktis 2.6.1. Voolu katkestamine poolis muudab pooli vooluallikaks, mis muundab voolu magnetvälja energiat elektrienergiaks. Just nimelt magnetvälja nõrgenemisel tekib ju voolu (ja seega ka magnetvälja) säilitada püüdev induktsiooni elektromotoorjõud.

Pildil on näha suure induktiiv­susega pool, millega tehakse katsega 2.5 analoogiline katse.

Kondensaatoris salvestunud energia sõltub mahtuvusest. Seega võib oodata poolis salvestunud energia samalaadset sõltuvust pooli induktiivsusest. Kuna selle sõltuvuse kuju korrektne tuletamine nõuaks kõrgema matemaatika rakendamist, siis rajame lihtsama käsitluse uuritava elektrinähtuse sarnasusele mingi tuntud mehaanikanähtusega. Teades, et energia on vaid vooluga poolil, võime seostada pooli energiat liikuvate laengukandjate kineetilise energiaga. Mehaanikast hästi tuntud kineetilise energia avaldis

sisaldab keha kiiruse ruutu. Pooli energia valemis peaks sama rolli mängima suurus, mis on võrdeline laengukandjate suunatud liikumise keskmise kiirusega ning määrab ka otseselt pooli poolt tekitatava magnetvoo. Selliseks suuruseks on voolutugevus. Vooluga pooli energia peaks olema võrdeline voolutugevuse ruuduga.

Kineetilise energia avaldises sisaldub aga ka keha mass. Mass kirjeldab keha inertsust kiiruse muutuste suhtes. Mida suurem on mass, seda rohkem aega kulub keha kiiruse muutmiseks. Näiteks võib kiirusega 5 m/s liikuva lapsevankri peatada hetkeliselt. Raske rongi pidurdusteekond on sama kiiruse korral aga juba kümmekond meetrit pikk ja pidurdamine kestab vastavalt kauem.

Juhtmesüsteemi inertsust voolu muutuste suhtes kirjeldab induktiivsus. Seega täidab induktiivsus elektrilaengu liikumisel sama rolli, mida mass mehaanilise liikumise juures. Juhtmepooli energia avaldise koostamisel tuleb kineetilise energia valemis sisalduv mass asendada induktiivsusega. Ühtekokku saame vooluga juhtmepooli energia jaoks valemi

(2.19)

Vooluga pooli energiat võib nimetada magnetvälja energiaks (sellest ka tähis Em). Pooli energia on ju olemas tänu sellele, et pooli juhtmes liikuvatele laengukandjatele mõjub pooli enda magnetväli. Magnetvälja energia all mõtleme me energiat, mida selles väljas omaks magnetiliselt aktiivne keha.

Kuidas aga sõltub magnetvälja energia magnetinduktsioonist? Teatavasti (valem 1.15 p.1.5.3) on voolutugevus juhtmes ning juhtme poolt tekitatav magnetinduktsioon võrdelised. Kui vooluga pooli magnetvälja energia on võrdeline voolutugevuse ruuduga, siis on ta järelikult võrdeline ka magnetinduktsiooni ruuduga. Võime järeldada, et nii elektri- kui ka magnetnähtustes on välja energia võrdeline välja jõuparameetri (E või B) ruuduga. See väide kehtib elektromagnetvälja kohta tervikuna.

Energeetilises aspektis võime elektromagnetvälja elektri- ja magnetkomponenti kokkuvõtteks võrrelda järgmiselt.

Tabel 2.1

Elektriväli

Magnetväli

Kehade süsteemi võimet tekitada elektrivälja (salvestada laengut) kirjeldab mahtuvus

selle SI-ühik on farad

Juhtmesüsteemi v