Sulge
  1. Sissejuhatus
    1. Sissejuhatus
  2. 1 Alalisvool
    1. 1.1 Elektrivoolu tekkemehhanismLisamaterjalid
    2. 1.2 Ohmi seadusLisamaterjalid
    3. 1.3 ElektrimõõtmisedLisamaterjalid
    4. 1.4 Takistuse sõltuvus temperatuuristLisamaterjalid
    5. 1.5 Elektromotoorjõud. Ohmi seadus kogu vooluringi kohtaLisamaterjalid
  3. 2 Elektrivool keskkondades
    1. 2.1 Elektrivool vedelikesLisamaterjalid
    2. 2.2 Elektrivool gaasisLisamaterjalid
    3. 2.3 Pooljuhtide elektrijuhtivusLisamaterjalid
    4. 2.4 p-n siire. PooljuhtdioodLisamaterjalid
    5. 2.5 Elektrist valgus ja valgusest elekterLisamaterjalid
  4. 3 Vahelduvvool
    1. 3.1 Vahelduvvoolu genereerimineLisamaterjalid
    2. 3.2 Voolutugevuse, pinge ja võimsuse efektiivväärtusedLisamaterjalid
    3. 3.3 Trafo. Elektrienergia ülekanneLisamaterjalid
    4. 3.4 Elektrimootor. ElektriohutusestLisamaterjalid
  5. 4 Molekulide soojusliikumine
    1. 4.1 TemperatuurLisamaterjalid
    2. 4.2 Ideaalne gaasLisamaterjalid
    3. 4.3 Ideaalse gaasi olekuvõrrandLisamaterjalid
    4. 4.4 IsoprotsessidLisamaterjalid
    5. 4.5 Siseenergia ja selle muutumise viisidLisamaterjalid
  6. 5 Termodünaamika (soojusenergia)
    1. 5.1 Gaasi töö. SoojushulkLisamaterjalid
    2. 5.2 Termodünaamika seadusedLisamaterjalid
    3. 5.3 EntroopiaLisamaterjalid
    4. 5.4 SoojusmasinLisamaterjalid
    5. 5.5 SisepõlemismootorLisamaterjalid
    6. 5.6 Auruturbiin ja külmikLisamaterjalid
Sulge

Märkmed ja kommentaarid

  • Märkmed puuduvad

Järjehoidjad

  • Järjehoidjad puuduvad
 
Madis Reemann Energia
 

Energia

  1. Sissejuhatus
    1. Sissejuhatus
  2. 1 Alalisvool
    1. 1.1 Elektrivoolu tekkemehhanismLisamaterjalid
    2. 1.2 Ohmi seadusLisamaterjalid
    3. 1.3 ElektrimõõtmisedLisamaterjalid
    4. 1.4 Takistuse sõltuvus temperatuuristLisamaterjalid
    5. 1.5 Elektromotoorjõud. Ohmi seadus kogu vooluringi kohtaLisamaterjalid
  3. 2 Elektrivool keskkondades
    1. 2.1 Elektrivool vedelikesLisamaterjalid
    2. 2.2 Elektrivool gaasisLisamaterjalid
    3. 2.3 Pooljuhtide elektrijuhtivusLisamaterjalid
    4. 2.4 p-n siire. PooljuhtdioodLisamaterjalid
    5. 2.5 Elektrist valgus ja valgusest elekterLisamaterjalid
  4. 3 Vahelduvvool
    1. 3.1 Vahelduvvoolu genereerimineLisamaterjalid
    2. 3.2 Voolutugevuse, pinge ja võimsuse efektiivväärtusedLisamaterjalid
    3. 3.3 Trafo. Elektrienergia ülekanneLisamaterjalid
    4. 3.4 Elektrimootor. ElektriohutusestLisamaterjalid
  5. 4 Molekulide soojusliikumine
    1. 4.1 TemperatuurLisamaterjalid
    2. 4.2 Ideaalne gaasLisamaterjalid
    3. 4.3 Ideaalse gaasi olekuvõrrandLisamaterjalid
    4. 4.4 IsoprotsessidLisamaterjalid
    5. 4.5 Siseenergia ja selle muutumise viisidLisamaterjalid
  6. 5 Termodünaamika (soojusenergia)
    1. 5.1 Gaasi töö. SoojushulkLisamaterjalid
    2. 5.2 Termodünaamika seadusedLisamaterjalid
    3. 5.3 EntroopiaLisamaterjalid
    4. 5.4 SoojusmasinLisamaterjalid
    5. 5.5 SisepõlemismootorLisamaterjalid
    6. 5.6 Auruturbiin ja külmikLisamaterjalid

Sissejuhatus

Õpiku lugejale

Käesolev õpik käsitleb energiat, mille liikidest on inimese jaoks olulisemad soojus- ja elektrienergia. Energia tarbimise kasv on lahutamatult seotud tsivilisatsiooni arenguga ja uute ressursside kasutuselevõtt pole üksnes tehnoloogiline, vaid globaalne probleem.
Õpiku põhitekst koosneb 25st õppetükist. Energiakursuse omandamist peaksid soodustama õpiku teises pooles õppetükkide kaupa toodud täiendused: lisamaterjal, ajalooline taust, pisut keerukamad probleemid ja kokkuvõte. Raudvara ja indeks on e-õpikus veel arenduses, paberõpikus asuvad nad õpiku lõpus lk 98–104. Raamatus on antud ka viiteid teistele õpikutele, kusjuures FLA – „Füüsikalise looduskäsitluse alused”, M – „Mehaanika”, EM – „Elektromagnetism” ja MM – „Mikro- ja megamaailma füüsika”.

Õpikust paberversioon saate endale hankida raamatupoest või otse kirjastusest Maurus.

Energilist õppimist!

Sissejuhatus

Valgus-, soojus-, toiduainete, tuule- ja voolava vee energia on pärit Päikeselt. Energia jõuab Maa atmosfääri välispiirini elektromagnetkiirgusena, mille võimsus ruutmeetri kohta on umbes 1400 kW. Atmosfäär laseb läbi nähtavat valgust ning soojuskiirgust. See energia käivitab fotosünteesi ja hoovused, paneb liikuma õhu, põhjustades tuule, ning aurustab vett, mis kondenseerub kõrgemates kohtades, tekitades vee loodusliku ringkäigu. Päikeselt tulnud energia arvel on toimunud väga pika aja jooksul fossiilsete kütuste tekkimine maakoores. Päritolult on eriline tuumaenergia, sest arvatakse, et näiteks uraan on tekkinud umbes 6,6 miljardi aasta eest supernoovas. Fossiilseid kütuseid ja tuumaenergiat loetakse taastumatuks energialiigiks.

Organismi eksistentsiks on vajalik nii aine- kui ka energiavahetus väliskeskkonnaga. Inimese päevane energiatarve toidus on viimase 100 000 aasta jooksul olnud oluliste muutusteta ligi 10 MJ (2400 kcal). Küll aga on ühiskonna arenguga väga palju kasvanud üldine energiatarve, eeskätt seoses uute energialiikide kasutuselevõtuga. Tule tegemine soojendamiseks ja toidu valmistamiseks suurendas energiavajadust üle kahe korra. Paikseks jäänud põllumees ja käsitööline tarbis juba 50 MJ energiat päevas. Edasi võeti kasutusele veoloomad, purjelaevad, tuulikud ja vesiveskid. Olulise muutuse energiatarbes andis aurumasina ja elektrienergia kasutuselevõtt. Inimesed hakkasid rohkem reisima ja soovisid koduses majapidamises suuremaid mugavusi. 20. sajandi esimesel poolel oli majanduslikult arenenud riikides energiakulu inimese kohta päevas jõudnud üle 300 MJ. Tänapäevase tehnika- ja infoühiskonna liige tarbib keskmiselt 1000 MJ ööpäevas, millest maailma keskmine on umbes 5 korda väiksem.

Termin energiaallikas pole füüsikalises mõttes täpne, sest tegelikult ei toimu energia tekitamist, vaid ühe energialiigi muutumine teiseks. Päikeses toimub
näiteks tuumaenergia muundumine soojusenergiaks. Põhilised inimese kasutatavad energialiigid on soojus- ja elektrienergia. Soojusenergiat kasutatakse ruumide kütmiseks ja vee soojendamiseks. Üle 80% elektrienergiast saadakse soojus- ja tuumaelektrijaamades, kus vahelduvvoolugeneraatori paneb käima auruturbiin. Tööstuses ja viimasel ajal ka transpordis eelistatakse elektrienergiat, mida saab suhteliselt hea kasuteguriga muundada jõumasinates mehaaniliseks tööks ja mis ei saasta oluliselt ümbritsevat keskkonda. Inimeste energiatarve pole ajalises plaanis ühtlane ning see tekitab energia salvestamise vajaduse. Naftat, kivisütt ja põlevkivi võib koguda tagavaraks, kuid elektrienergia salvestamine suures koguses on keeruline ja kallis. Soojusenergia salvesta mine mitte eriti kõrgel temperatuuril pole kasulik, kuna sellise energia muundamine mehaaniliseks tööks oleks väikse kasuteguriga.

Energia tarbimises on valitsenud kogu aeg ebavõrdsus. Väga palju inimesi piirdub ka kaasajal eluks vajaliku miinimumiga. Samuti on ressursid piiratud ja jaotunud riigiti väga erinevalt. Need vastuolud on põhjustanud energiakriise ja riikidevahelisi konflikte. Maailma rahvastiku kasv ja nõudmiste suurenemine pingestab ka tulevikus energiaprobleemide lahendamist. Tehniliste küsimuste kõrval on kõige raskem muuta inimese mõtteviisi ja panna teda vähem ja säästlikumalt tarbima. Mõiste energia tänapäevases mõttes toodi füüsikasse 19. sajandi keskel. Energia jäävuse seadus on kirja pandud ka esimeses eestikeelses füüsikaõpikus 1855. aastal:

1 Alalisvool

1.1 Elektrivoolu tekkemehhanism

Joonis 1.1

Elektrivooluks nimetatakse laengukandjate suunatud liikumist. Elektrivoolu iseloomustavaks suuruseks on voolutugevus, mis näitab kui suur elektrilaeng läbib juhtme ristlõiget ajaühikus. Voolutugevuse SI ühik on 1 amper (1 A). Juhi ristlõiget läbib sel juhul 1 sekundi jooksul laeng 1 kulon. Voolu suunaks on kokku lepitud positiivsete laengute suunatud liikumise suund. Joonisel 1.1. on kujutatud ühte vooluringi lõiku pikkusega l, milles liiguvad elektrivälja sihis ühesugused osakesed laenguga q keskmise kiirusega v.

Olgu vabade laetud osakeste arv juhtme ruumalaühikus ehk kontsentratsioon n ja aja t jooksul jõuavad kõik osakesed läbida juhtmelõigu parempoolse otsa pindalaga S. Laetud osakeste arv

milles

ja juhtme ristlõiget läbinud kogulaeng

Voolutugevuse leidmiseks tuleb kogulaeng jagada ajaga, seega

(1.1.)

Saadud valemist on näha, millised suurused määravad voolutugevuse juhis. Kolm nendest, q, n ja v, on mikroosakesi iseloomustavad suurused. Metallide puhul on laengukandjateks tuuma mõjupiirkonnast vabanenud juhtivuselektronid, mis liiguvad positiivsete laengukandjate liikumise vastassuunas ning nendel on elementaarlaeng q = -e = -1,60·10-19 C. Vabade elektronide kontsentratsioon n välistingimustest oluliselt ei sõltu, küll aga elektronide triivimise kiirus v metalli kristallvõre aatomite vahel. Vabade elektronide puhul tuleb eristada kahte arvväärtuse poolest oluliselt erinevat kiirust, kaootilise soojusliikumise kiirus ja elektrivälja poolt tekitatud triivikiirus. Esimene nendest on palju suurem, aga kaootilisuse tõttu triivliikumisse mingit panust ei anna. Elektrivoolu tugevuse määrab elektrivälja poolt tekitatud aeglane triivikiirus. Kui 1 mm diameetriga vaskjuhtmes triivivad elektronid kiirusega 0,1 mm/s, on voolutugevus umbes 1 A. Elektronide kaootilise liikumise kiirus on toatemperatuuril ligi miljard korda suurem.

Võib jääda mulje, et taskulambi sisselülitamisel võtaks süttimine kaua aega, kuni elektronid patareist lambini triivivad. Nii see ei ole, sest vabu elektrone on kogu vooluringi ulatuses ning elektriväli levib väga kiiresti, valguse kiirusega.

 

Kokkuvõte

Elektrivool

Elektrivool on laengukandjate suunatud liikumine. Voolu suunaks loetakse kokkuleppeliselt positiivsete laengute liikumise suunda. Voolutugevus on arvuliselt võrdne juhi ristlõiget ajaühikus läbinud laenguga

Voolutugevuse ühik

Voolutugevuse ühik üks amper on SI põhiühik ja ta on defineeritud vooluga juhtide vastastikmõju kaudu. 1 A voolutugevuse korral läbib juhi ristlõiget 1 s jooksul laeng 1 C.

Ülesanded

Kuuldeaparaadi vooluallikas mahutab 430mAh. Kui suure tugevusega voolu tarbitakse keskmiselt, kui vooluallikas peab vastu 3 kuud?
LED-valgustit läbib vool tugevusega 15 mA ja tootja lubab tema tööeaks 25000 tundi. Kui suur elektrilaeng läbib valgustit selle aja jooksul?
Vasest juhtmes ristlõikepindalaga 1,5·10-6 m2 on vabade elektronide kontsentratsioon 8,4·1028 m-3 ja kiirus 0,37·10-3 m/s. Arvuta voolutugevus juhtmes.
On kaks samasugust juhet, üks vasest, teine alumiiniumist. Voolutugevus neis on sama, aga vabade elektronide kontsentratsioon on alumiiniumist juhtmes 1,4 korda väiksem. Kas alumiiniumist juhtmes on elektronide triivkiirus suurem või väiksem? Mitu korda?
Mille poolest erinevad vabade elektronide soojusliikumise ja suunatud liikumise kiirused?
Temperatuuri tõustes metalljuhet läbiva voolu tugevus vähene, ehkki vabade elektronide kontsentratsioon praktiliselt ei muutu. Mis muutub metallis, et voolutugevus väheneb?
Lisamaterjalid

1.2 Ohmi seadus

Kui mõõta metallist juhti läbiva voolutugevuse sõltuvust tema otstele rakendatud pingest (joonis 1.2. a), siis on näha, et voolutugevus juhis on võrdeline pingega juhi otstel (joonis 1.2. b).

Joonis 1.2. a
Joonis 1.2. b

Seega on antud juhi jaoks pinge ja voolutugevuse suhe sama ning seda suhet, takistust R, võib kasutada metallist keha iseloomustamiseks voolu takistamise seisukohalt. Seos ongi valemi kujul esitatud Ohmi seadus.

(1.2.)

Kui sama kehaga korrata katset kõrgemal temperatuuril, jääb sõltuvus võrdeliseks, kuid graafiku tõus on väiksem. Temperatuuri tõus suurendab metallist keha takistust. Saksa füüsiku Georg Simon Ohmi poolt korraldatud katsed näitasid, et metalli takistus sõltub juhi pikkusest, ristlõikepindalast ja materjalist, ning hilisemate mõõtmistega leiti seos, kus ρ on materjali eritakistus, mis määratakse katseliselt.

(1.3.)

Võrdeline sõltuvus pinge ja voolutugevuse vahel pole üldkehtiv. Näiteks ioone sisaldavas lahuses, pooljuhis ja elektrivoolu juhtivas gaasis on sõltuvus keerulisem.

Eritakistuse järgi võib aineid ja materjale jaotada juhtideks, isolaatoriteks ja pooljuhtideks. Juhtidel on eritakistus suhteliselt väike ja isolaatoritel (dielektrikutel) suur. Pooljuhtide eritakistus on vahepealne, kusjuures see sõltub olulisel määral temperatuurist, valgustatusest ja lisanditest.

Kokkuvõte

Voolutugevus

Voolutugevus juhis on võrdeline pingega juhi otstel

Võrdeteguri pöördväärtust nimetatakse takistuseks ja selle ühikuks on Ω (oom). Takistuse tõttu esineb elektrivoolu soojuslik toime.

Juhi takistus

Takistus on võrdeline juhi eritakistuse ja pikkusega ning pöördvõrdeline juhi ristlõikepindalaga

Võrdetegurit ρ nimetatakse aine eritakistuseks, mis näitab ühikulise pikkuse ja ristlõikega juhi takistust. SI ühik on Ω·m.

Juhi takistuse temperatuurisõltuvus

Juhi takistus oleneb temperatuurist kujul

Ülesanded

Juhi otstele rakendati pinge 6 V ja siis läbis seda vool 1,5 A. Kui suur vool läbis sama juhti, kui talle rakendati pinge 2 V?
Vooluallikaga Varta AA rakendati tarbijale takistusega 0,2 kΩ pinge 1,5 V. Arvuta voolutugevus tarbijas amprites ja milliamprites.
Metalljuhtme takistus on 0,2 oomi. Kui suur on 6 korda pikema ja 6 korda väiksema ristlõikepindalaga samast materjalist juhtme takistus?
Arvuta reostaadi takistus, kui reostaat kujutab endast 20 m pikkust, 0,4 mm2 ristlõikepindalaga konstantaanist takistustraati eritakistusega 0,49 Ω*mm2/m.
Mõõteriistu saab ühendada vooluringi erinevalt, näiteks jadamisi või rööbiti tarbijaga. Kuidas tuleks ühendada tarbija suhtes ampermeeter ja voltmeeter?
Missuguse takistusega peaks olema ideaalne amper- ja voltmeeter?
Juhtivus G on takistuse pöördväärtus. Missugune näeks välja Ohmi seaduse valem juhtivuse kaudu?
Lisamaterjalid

1.3 Elektrimõõtmised

Elektrimõõteriistu võib jaotada osutmõõteriistadeks ja numbrilisteks mõõteriistadeks. Vastavad sünonüümid on analoog- ja digitaalmõõteriist.

Joonis 1.3. a Osutmõõteriist
Joonis 1.3. b Osutmõõteriista tööpõhimõte

Vooluga raamile mõjub magnetväljas jõud ja voolutugevust saab mõõta magnetväljas vooluga raamile mõjuva jõu kaudu (joonis 1.3.). Raami vastaskülgedele mõjuvad jõud pööravad seda päripäeva. Raami külge pannakse osuti ja jõu tasakaalustamiseks spiraalvedrud.

Osuti kaldenurga järgi saab määrata voolutugevuse. Kui laseme voolu läbi takistuse, saame määrata ka pinget, mis on võrdeline voolutugevusega. Digi­taalses mõõteriistas muudetakse pinge muunduriga kahendkoodiks ja see omakorda ekraanil numbriliseks näiduks (joonis 1.4.).

Joonis 1.4. a Digitaalmõõteriista
põhimõtteline skeem
Joonis 1.4. b Multimeeter

Elektriliste suuruste mõõtmisel esinevad erineva päritoluga vead FLA. Elektrimõõtmistel on tegemist B-tüüpi mõõtemääramatusega, mis saadakse mõõteriista tootja poolt antud mõõteriista täpsuse hinnangust. Ebatäpsust iseloomustatakse absoluutse ja relatiivse piirveaga. Üleskirjutus katse protokollis I = (1,26 ± 0,05) A tähendab seda, et voolutugevuse mõõdetud väärtus on 1,26 A, absoluutne piirviga ΔI = 0,05 A ja voolutugevuse tegelik väärtus asub vahemikus 1,21 A kuni 1,31 A. Relatiivne piirviga on absoluutse piirvea ja mõõtetulemuse suhe, mis antud juhul on umbes 4% ning iseloomustab ka mõõtmise täpsust.

Osutmõõteriistale on kirjutatud täpsusklass (joonis 1.3. a). See on arv, mis näitab mõõteriista suhtelist piirviga protsentides maksimaalse näidu korral. Täpsusklassid võivad olla 4; 2,5; 2,0; 1,5; 1; 0,5; 0,2; 0,1; 0,05 ja 0,02. Mida väiksem arv, seda täpsem mõõteriist. Kui laboratoorses töös kasutataval amper- meetril on täpsusklass 2,5 ja mõõtepiirkond 2 A, siis ampermeetri mõõtemääramatus (absoluutne piirviga) ΔI = ± 0,05 A. Numbrilise mõõteriista passis on esitatud mõõtemääramatus näiteks kujul ± 0,5% ± 2D. See tähendab, et piirviga on 0,5% näidust pluss näidu viimase numbri 2 ühikut.

Elektrimõõtmistel tuleb arvestada, et mõõteriistad on samuti elektrivoolu tarbijad (tarvitid). Mõõteriistade ühendamisel vooluringi peaks riistade põhjustatud muutused olema võimalikult väiksed. Voolutugevust mõõdetakse ampermeetriga, mis ühendatakse tarvitiga jadamisi. Ampermeetril endal on samuti takistus ja see muudab voolutugevust vooluringis. Selleks, et muutus oleks väike, peaks ampermeetri takistus olema tarviti omast oluliselt väiksem. Voltmeeter seevastu ühendatakse rööbiti ja tema takistus peaks olema võimalikult suur.

Elektrimõõtmisi kasutatakse ka mitteelektriliste suuruste kaudseks mõõtmiseks. Selleks tuleb mõõdetav suurus muuta pingeks või vooluks. Termopaar koosneb kahest erinevast metallist vardast, mille ühed otsad on kokku joodetud. Kui jootekohta kuumutada, tekib vabade otste vahel pinge, mille väärtus oleneb jootekoha temperatuurist. Teades pinge ja temperatuuri seost, saame määrata temperatuuri kaudselt pinge mõõtmise abil. Lisaks toodud näitele on palju füüsikalisi nähtusi, kus mehaaniline, soojuslik või kiirguse energia muudetakse elektrienergiaks.

Elektrimõõtmiste eeliseks on asjaolu, et mõõtetulemusi on hea üle kanda, salvestada, töödelda ja kasutada protsesside automaatseks juhtimiseks.

Kokkuvõte

Elektrimõõteriista täpsusklass

Elektrimõõteriista täpsusklass on relatiivne piirviga protsentides mõõteriista maksimaalse näidu korral.

Numbrilise mõõteriista mõõtemääramatus

Numbrilise mõõteriista korral on mõõtemääramatuse arvutamise valem toodud riista passis.

Ülesanded

Voltmeetri täpsusklass on 4 ja mõõtepiirkond 6 V. Arvutage voltmeetri absoluutne piirviga. Kui suur on relatiivne piirviga 3 V näidu korral?
Digitaalne voltmeeter näitab pinget 403 V. Mõõtepiirkond on 1000 V ja mõõteriista passis seisab kirjas, et selle mõõtepiirkonna määramatus on ± 0,8% ± 2D. Esitage pinge koos absoluutse piirveaga.
Kas osutmõõteriista absoluutne viga sõltub näidust?
Miks soovitatakse valida mõõtepiirkond, milles näit on võimalikult suur?
Lisamaterjalid

1.4 Takistuse sõltuvus temperatuurist

Joonis 1.5. a

Temperatuuri tõustes väheneb metallis vabade elektronide triivikiirus, kuna intensiivistub kristallvõre aatomite võnkumine. See takistabki elektronide liikuvust ja metalli takistus kasvab. Katsed näitavad, et metalli takistuse sõltuvus temperatuurist on ligikaudu lineaarne (joonis 1.5. a).

Selle sõltuvuse võib kirja panna valemiga, kus R0 on takistus 0 ºC juures, α (ºC-1 või K-1) takistuse temperatuuritegur ja t temperatuur Celsiuse kraadides.

(1.4.)

Takistuse temperatuuritegur on puhastel metallidel suurusjärgus 10-3 ºC-1, näiteks volframil 0,0045 ºC-1.

Lülitades toas põlema algul toatemperatuuril oleva hõõglambi, tõuseb volframist hõõgniidi temperatuur kiiresti rohkem kui kaks tuhat kraadi ja hõõgniidi takistus ligi kümme korda. Hõõglamp kipubki läbi põlema sisselülitamisel, mil tema takistus on veel väike ja lambis eralduv võimsus umbes 10 korda suurem kui stabiliseerunud tööolukorras. Elektrilistes küttekehades kasutatakse tavaliselt sulameid, mille takistuse temperatuuritegur on väike. Näiteks nikeliinil on see umbes 10-4 ºC-1 ja elektripliidi takistus on külmalt ja kuumutatult praktiliselt ühesugune. On aineid, mille takistuse temperatuuritegur on negatiivne, st takistus temperatuuri tõustes väheneb. Elektrolüütide, grafiidi ja pooljuhtide takistus väheneb mittelineaarselt.

Teades keha takistuse sõltuvust temperatuurist, saame seda keha kasutada näiteks takistustermomeetri andurina: vooluallikaga ühendatud anduri temperatuuri muutus põhjustab takistuse ja voolutugevuse muudu. Voolu muutust on aga mugav mõõta, salvestada, töödelda ning protsesside automatiseeritud juhtimisel rakendada.

 

20. sajandi alguses avastati nähtus, kus metalli takistus muutus väga madalal temperatuuril hüppeliselt nulliks. Tahke elavhõbedaga toimus see temperatuuril –269 °C (joonis 1.5. b). Sellises olukorras voolu soojuslik toime kaob ja kord liikuma pandud vool ei lakkagi. Hiljem avastati ülijuhtivus veel paljudel ainetel ja ka kõrgematel temperatuuridel. Kui saaksime ülijuhtivuse tekitada looduses esinevatel temperatuuridel, saaksime elektrienergia edastamisel esinevaid soojuslikke kadusid vältida. On valmistatud aineid, milles ülijuhtivusele üleminek toimub kõrgemal temperatuuril, näiteks HgBaCuO –138 ºC juures.

Joonis 1.5. b

Kokkuvõte

Pooljuhtide, elektrolüütide ja gaaside takistuse temperatuurisõltuvus

Pooljuhtide, elektrolüütide ja gaaside takistus temperatuuri kasvuga väheneb.

Juhi takistuse temperatuurisõltuvus

Juhi takistus oleneb temperatuurist kujul

Ülijuhtivus

Ülijuhtivus on nähtus, kus ained madalal temperatuuril ei oma elektrilist takistust.

Ülesanded

Kui hõõglamp põleb, on tema takistus 810 Ω ja volframist hõõgniidi temperatuur 2400 ºC. Arvutage lambi takistus toatemperatuuril 20 ºC juures, kui volframi takistuse temperatuuritegur on 4,5·10-3 ºC-1.

Mitu korda muutub jahtunud lambi takistus sisselülitamisel? Mitu korda muutub lambi võimsus?

Lahendus

Andmed:
hõõgniidi takistus töörežiimis R1 = 810 Ω
hõõgniidi temperatuur töörežiimis t1 = 2400 °C
hõõgniidi temperatuur toatemperatuuril t2 = 20 °C
volframi takistuse temperatuuritegur α = 4,5*10-3 °C-1
hõõgniidi takistus toatemperatuuril R2 = ?
takistuse suhe R1/R2 = ?
võimsuste suhe N1/N2 = ?

Takistuse temperatuurisõltuvuse valem on:
R = R0(1 + α*t),
kus R0 on takistus 0 °C juures ja R on takistus temperatuuril t.
See võrrand kehtib mõlemal juhul, nii R1 ja t1 kui ka R2 ja t2 jaoks.
R1 = R0(1 + α*t1)
R2 = R0(1 + α*t2)
Avaldame esimesest võrrandist R0 ja asendasime teise:
R0 = R1/(1 + α*t1)
R2 = R0(1 + α*t2) = R1(1 + α*t2)/(1 + α*t1)
R2 = 810 Ω (1 + 4,5*10-3 °C-1*20 °C)/(1 + 4,5*10-3 °C-1*2400 °C) = 75 Ω.

Takistuste suhe
R1/R2 = (1 + α*t1)/(1 + α*t2) = 11.

Võimsuste suhte jaoks on vaja võimsuse valemit:
N = I2R,
kust on näha, et võimsus on võrdeline takistusega ja võimsus kasvas ka 11 korda.

Vastus: toatemperatuuril on lambi takistus 75 Ω ja sisselülitamisel kasvavad nii takistus kui ka võimsus 11 korda.

Kui hõõglamp põleb, on tema takistus 810 Ω ja volframist hõõgniidi temperatuur 2400 ºC. Arvutage lambi takistus 0 ºC juures, kui volframi takistuse temperatuuritegur on 4,5·10-3 ºC-1.

Lahendus

Andmed:
hõõgniidi takistus töörežiimis R1 = 810 Ω
hõõgniidi temperatuur töörežiimis t1 = 2400 °C
hõõgniidi temperatuur uuritava takistuse korral t0 = 0 °C
volframi takistuse temperatuuritegur α = 4,5*10-3 °C-1
hõõgniidi takistus 0 °C juures R0 = ?

Takistuse temperatuurisõltuvuse valem on:
R = R0(1 + α*t),
kus R0 on takistus 0 °C juures (mida ongi vaja teada) ja R on takistus temperatuuril t.
R0 = R/(1 + α*t) = 810 Ω/(1 + 2400 °C*4,5*10-3 °C-1) = 69 Ω.

Vastus: lambi takistus 0 °C juures on 69 Ω.

Elektrivoolul võib esineda soojuslik, magnetiline ja keemiline toime. Missugune nendest esineb alati?
Elektrivoolu tööd saab arvutada valemiga A = IUt. Kirjutage valem elektrivoolu võimsuse arvutamiseks ja andke valemis olevate füüsikaliste suuruste nimetused.
Kirjutage vooluga juhis eralduva soojushulga valem voolutugevuse, takistuse ja aja järgi.
Lisamaterjalid

1.5 Elektromotoorjõud. Ohmi seadus kogu vooluringi kohta

Vooluring koosneb vooluallikast, tarbijatest ja ühendusjuhtmetest. Et tekiks püsiv vool, peab vooluring olema suletud. Kui positiivne laeng on jõudnud vooluallika plussklemmilt läbi vooluringi miinusklemmile, peab voolu säilitamiseks mingi kõrvaljõud Fk (joonis 1.6. a) elektriväljale vastu töötades selle laengu uuesti plussklemmile viima.

Joonis 1.6. a
Joonis 1.6. b

Selle kõrvaljõu töö arvelt saabki vooluringis eralduda soojushulk. Kõrvaljõud teevad tööd vooluallikas, kus toimub mingi teise energialiigi (mehaanilise, keemilise vms) muutmine elektrienergiaks positiivsete ja negatiivsete laengu lahutamise teel. Vooluallika elektromotoorjõud on võrdne kõrvaliste jõudude tööga ühikulise laengu ümberpaigutamisel kogu suletud voolu­ringi ulatuses.

(1.5.)

Elektromotoorjõu ühik on sarnaselt pinge ühikuga volt, sest

Kõrvaljõudude töö muutub vooluringis soojushulgaks, mis eraldub nii voolu- ringi välisosas kui ka vooluallikas (joonis 1.6. b). Ak = εq = εIt = I2Rt + I2rt, kus R on vooluringi välisosa takistus ja r vooluallika sisetakistus. Avaldades viimasest võrdusest voolutugevuse, saame:

(1.6.)

Saadud seos väljendab Ohmi seadust kogu suletud vooluringi kohta. Voolutugevus suletud vooluringis on võrdne vooluallika elektromotoorjõu ja vooluringi kogutakistuse suhtega.

Vooluringi kogutakistus koosneb vooluallika sisetakistusest r ja vooluringi välisosa takistusest R. Üldjuhul tuleb viimase hulka arvestada ka ühendusjuhtmete takistus.

Vooluallika elektromotoorjõudu ja sisetakistust võib vaadelda kui vooluallikat iseloomustavaid suurusi, mis lühikese aja jooksul ei muutu. Kui aga keemiline vooluallikas vananeb, väheneb pisut tema elektromotoorjõud ja suureneb oluliselt sisetakistus.

Avaldades valemist 1.6. elektromotoorjõu, saame ε = IR + Ir, milles suurus IR = U on vooluallika klemmipinge U = εIr. Viimasest valemist on näha, et elektromotoorjõud on vooluallika maksimaalne klemmipinge ja voolu kasvades vooluallika klemmipinge väheneb. Joonisel 1.7. a on klemmipinge mõõtmise vooluringi skeem ja katsetulemuste graafik 1.7. b.

Joonis 1.7. a
Joonis 1.7. b

Kui vooluringi välisosa takistus muutub nulliks, tekib lühis. Lühisvoolu tugevus on määratud vooluallika elektromotoorjõu ja sisetakistuse suhtega

Kokkuvõte

Ohmi seadus kogu vooluringi kohta

Voolutugevus suletud vooluringis on võrdeline vooluallika elektromotoorjõuga ja pöördvõrdeline vooluringi välisosa ja vooluallika sisetakistuse summaga

Vooluallika elektromotoorjõud

Vooluallika elektromotoorjõud on arvuliselt võrdne kõrvaljõudude tööga ühikulise laengu ümberpaigutamisel kogu suletud vooluringi ulatuses

Ülesanded

Keemilise vooluallika elektromotoorjõud on 1,5 V. Kui suure töö teevad kõrvaljõud 1 C laengu viimisel läbi kogu vooluringi?
Keemilise vooluallika elektromotoorjõud on 1,5 V. Kui suur laeng läbib vooluallikat kogu töötamise aja jooksul, kui temasse salvestatud energiast saame kasutada 2700 J?
Keemilise vooluallika elektromotoorjõud on 1,5 V. Kui pikk on vooluallika tööiga voolutugevusel 0,25 A, kui temasse salvestatud energiast saame kasutada 2700 J?
Kui joonisel 1.7. olev vooluring on avatud, näitab voltmeeter 3,1 V. Vooluringi sulgemisel on mõõteriistade näidud 2,8 V ja 0,5 A. Määrake vooluallika elektromotoorjõud, vooluringi välisosa takistus ja vooluallika sisetakistus.
Arvutage voolutugevus vooluallikas, kui vooluringis tekib lühis. Vooluallika elektromotoorjõud on 3,1 V, vooluringi välisosa takistus on 5,6 Ω ja vooluallika sisetakistus 0,6 Ω.
Nii pinge kui ka elektromotoorjõud defineeritakse töö ja laengu suhtega. Missuguste jõudude tööd need on ja mille poolest nad erinevad?
Miks voolutugevuse kasvades vooluallika klemmpinge väheneb?
Mida tähendab lühis? Mida võib lühis esile kutsuda koduses majapidamises?
Lisamaterjalid

2 Elektrivool keskkondades

2.1 Elektrivool vedelikes

Keemiliselt puhas vesi on dielektrik (isolaator). Ohutustehnika juhib tähelepanu ohtudele elektriseadmete kasutamisel vesistes ja niisketes kohtades. Hoiatus on õigustatud, kuna vesi, lahustades aineid, tekitab ioone. Juba väike lahustatava aine kogus (10-8 %) muudab puhta vee elektrijuhiks. Elektro­lüüt on aine, milles laengukandjateks on ioonid.

Joonis 1.8

Kui näiteks vaskkloriidi lahustada vees, siis veemolekulide toimel laguneb sool ioonideks CuCl2 = Cu2+ + 2Cl-. Sellist protsessi nimetatakse elektrolüütiliseks dissotsiatsiooniks ja tekkinud lahus on elektrolüüt. Paneme lahusesse elektroodid, näiteks söepulgad. Katoodiks nimetatud elektrood on ühendatud vooluallika miinusklemmiga ja anood plussklemmiga (joonis 1.8.).

Vooluallika tekitatud elektriväli paneb ioonid lahuses triivima elektroodide poole. Positiivselt laetud vase ioonid liiguvad katoodile, saavad puuduvad elektronid ja vask sadestub katoodile. Negatiivselt laetud kloori ioonid liiguvad anoodile, annavad seal ära liigse elektroni ja eralduvad gaasilise kloorina. Selliseid elektrivoolu toimel kulgevaid redoksreaktsioone nimetatakse elektrolüüsiks. Elektrivool elektrolüütides on ioonide suunatud liikumine. Vooluga elektrolüütides kaasneb ainete eraldumine elektroodidel. Esimesena võeti elektrolüüs kasutusele esemete katmisel kulla- või hõbedakihiga. Elektrolüüsi seaduse avastas Michael Faraday. Elektrolüüsil eraldunud aine mass on võrdeline elektrolüüti läbinud laenguga, kus võrdetegurit nimetatakse aine elektrokeemiliseks ekvivalendiks.

(1.7.)

Katsest saadud vase elektrokeemiline ekvivalent on 0,33 mg/C. See tähendab, et eelnevalt kirjeldatud katses eraldub iga elektrolüüti läbinud 1 C laengu kohta katoodile 0,33 mg vaske.

Ka metallimaagi või soola sulatamisel tekivad ioonid ja seda asjaolu saab kasutada näiteks alumiiniumi elektrolüütiliseks tootmiseks boksiidist või naatriumi saamiseks keedusoolast. Alati ei ole elektrolüüsil toimuvad protsessid nii lihtsad kui eespool kirjeldatud. Sõltuvalt metalli aktiivsusest ja elektroodide materjalist võivad eralduda erinevad ained. Näiteks sulatatud NaCl elektrolüüsil eralduvad naatrium ja kloor, kuid NaCl vesilahuse elektrolüüsil eralduvad hoopis vesinik ja kloor.

Kokkuvõte

Elektrolüütilised ained

Elektrolüütideks on ained, milles vabadeks laengukandjateks on ioonid.

Elektrolüüs

Elektrolüüs on protsess, milles alalisvool põhjustab redoksreaktsiooni.

Elektrolüüsi käigus elektroodile eraldunud aine mass

Elektrolüüsi käigus elektroodile eraldunud aine mass on võrdeline elektrolüüti läbinud laenguga.

Võrdetegurit nimetatakse aine elektrokeemiliseks ekvivalendiks. See määratakse katseliselt ja on arvuliselt võrdne aine massiga, mis eraldub elektrolüüti läbinud ühikulise laengu korral.

Ülesanded

Elektrolüüsis eraldus 0,5 grammi hõbedat. Arvutage elektrolüüti läbinud laeng, kui hõbeda elektrokeemiline ekvivalent on 1,118·10-6 kg/C. Arvutage hõbetamise aeg, kui voolutugevus oli 0,2 A.
Kui palju vesinikku ja hapnikku tekib 3,6 kg vee elektrolüüsil? Vesiniku ja hapniku aatommassid on vastavalt 1 ja 16 aatommassiühikut.
Vooluallikaga on jadamisi ühendatud elektrolüüsivannid, millest ühes eraldub nikkel ja teises tsink. Teatava aja jooksul eraldus 300 mg niklit. Kui palju eraldus sama aja jooksu tsinki? Elektrokeemiline ekvivalent on niklil 0,30 mg/C ja tsingil 0,34 mg/C.
Soolhappe (HCl) elektrolüüsis eraldus katoodil 1 g vesinikku. Mitu grammi eraldus anoodil kloori? Vesiniku aatommass on 1 amü ja klooril 35,5 amü.
Lisamaterjalid

2.2 Elektrivool gaasis

Kõrgepingeliine ei kaeta isoleeriva kihiga, sest õhk on tavaoludes isolaator. Ent kui isoleerimata juhtmed piisavalt lähestikku viia, tekib nende vahel elektriline läbilöök. Püüame uurida, millistel tingimustel elektrivool gaasis tekib. Anname hõõrdumisega elektriseeritud eboniitpulgaga elektroskoobile laengu. Laengu saavad ka elektroskoobiga ühendatud metallist plaadid – katood ja anood. Näeme, et laeng võib püsida küllaltki kaua. Viies plaatide vahele leegi, märkame laengu kahanemist (joonis 1.9. a), aga leegi eemaldamisel laengu kahanemine jälle seiskub.

Joonis 1.9. a
Joonis 1.9. b

Õhus vabad laengukandjad praktiliselt puuduvad. Kuid leegilt saadud energia arvelt toimub elektronide vabanemine õhus olevatest neutraalsetest gaasi molekulidest. Tekivad vabad elektronid ja positiivselt laetud ioonid ja seda nähtust nimetatakse ionisatsiooniks. Plaatidevaheline elektriväli paneb elektronid ja ioonid vastassuunaliselt liikuma ning vähendab laengut ja osuti hälvet. Leegi kustutamisel hakkavad elektronid ja positiivsed ioonid plaatide vahel uuesti neutraalseteks molekulideks ühinema – rekombinatsioon – ja gaas muutub jällegi isolaatoriks.

Neutraalse molekuli võib ioniseerida ka sellega põrkav elektriväljas piisavalt suure kineetilise energiani kiirendatud elektron (joonis 1.9. b). Nähtust nimetatakse põrkeionisatsiooniks ja selle tekkimiseks peab elektroni energia olema vähemalt võrdne elektroni väljumistööga gaasi molekulist.

Joonis 1.10. Gaasi pinge-voolu tunnusjoon

Joonisel 1.10. on esitatud voolutugevuse sõltuvus pingest gaasis. Graafiku algus on sarnane metalliga, kuid teatavast pingest alates voolutugevus enam ei kasva. Seda voolu nimetatakse küllastusvooluks Ik ja põhjuseks on asjaolu, et kõik ajaühikus tekkinud vabad laengukandjad jõuavad elektroodidele. Pinge edasisel suurenemisel tekib põrkeionisatsioon ja voolutugevus kasvab järsult.

Elektroni energiat saab suurendada elektrivälja tugevdamise või gaasi hõrendamisega. Hõrendamine suurendab elektroni vaba tee pikkust ja aega järgmise põrkeni. Sellisel juhul saab elektron koguda põrkeionisatsiooniks vajalikku energiat.

Elektrivoolu gaasis nimetatakse gaaslahenduseks, mis jaotatakse sõltuvaks ja sõltumatuks lahenduseks. Eeltoodud katses sõltus lahendus leegist, kõrvalisest ioniseerivast energiaallikast. Ionisatsiooni tekitajaks võib olla ka valgus ja radioaktiivne kiirgus. Üks viis mõõta radioaktiivset kiirgust on loendada kiirguse poolt gaasis põhjustatud vooluimpulsse. Pärast põrkeionisatsiooni on tegemist juba sõltumatu gaaslahendusega, sest vabad laengukandjad tekitatakse elektriväljas saadud energia arvelt.

Kokkuvõte

Gaaside elektrijuhtivus

Tavatingimustes on gaasid halvad elektrijuhid. Elektrivoolu juhib ainult ioniseeritud gaas.

Põrkeionisatsioon

Põrkeionisatsiooniks nimetatakse nähtust, kus elektriväljas kiirendatud elektron põrkudes gaasi aatomiga lööb sellest välja elektrone.

Sõltumatu gaaslahendus

Sõltumatu gaaslahendus tekib pärast põrkeionisatsiooni algust ja kestab edasi ka välise ionisaatori eemaldamisel.

Gaaslahendus

Elektrivoolu gaasis nimetatakse gaaslahenduseks.

Ülesanded

Metallplaatide vahel on elektrivälja tugevus 2850 V/m ja plaatide vaheline kaugus on 10 cm. Arvutage pinge plaatide vahel. Kui suure töö teeb elektriväli elektroni viimisel ühelt plaadilt teisele?
Üks elektronvolt (eV) on energia,  mille saab elektron läbides elektriväljas punktid, mille vaheline pinge on üks volt. Teisenda elektronvolt  SI energiaühikuks džaul. Kui kiiresti liigub elektron, mille kineetiline energia on 1 eV?
Miks tekib sõltumatu gaaslahendus hõrendatud gaasis madalamal pingel?
Miks vaakum tavatingimustes elektrit ei juhi, ehkki vaakumit võib vaadelda kui tugevasti hõrendatud gaasi?
Lisamaterjalid

2.3 Pooljuhtide elektrijuhtivus

 

Pooljuhid on kaasaegse elektroonika kõige olulisemaks lähtematerjaliks. Neist valmistatakse transistore, dioode ja teisi pooljuhtseadeldisi.

Kõige olulisem pooljuhi omadus on eritakistus, mis sõltub tugevalt lisanditest ning on kergesti mõjutatav väliste energiaallikatega. Kõrgem temperatuur, valgustatus ja lisandid parandavad oluliselt pooljuhi juhtivusomadusi.

Olulisteks pooljuhtmaterjalideks on räni ja germaanium, mis paiknevad elementide perioodilisuse süsteemis 14. ehk IVA rühmas. Nende aatomite väliskihis on 4 elektroni ja nad on omavahel seotud kovalentsete sidemetega (joonis 1.11. a).

Joonis 1.11. a Pooljuhtide elektrijuhtivus
Joonis 1.11. b pooljuhtide elektrijuhtivus

Madalatel temperatuuridel on sidemed tugevad ja pooljuht käitub isolaatorina. Kõrgemal temperatuuril räni aatomiga nõrgalt seotud elektronid vabanevad. Struktuurist lahkunud elektronide asemele jäävad nn augud (joonis 1.11. b), mida võime vaadelda positiivsete laengutena. Pooljuhti on tekkinud elektron-auk paarid.

Rakendades pooljuhile elektrivälja, hakkavad vabanenud elektronid liikuma. Positiivse laenguga auk tõmbab enda kohale kõrvalaatomi elektroni, tekitades omakorda kõrvalaatomis augu. Elektrivool pooljuhis on vabade elektronide ja aukude suunatud liikumine. Sellist puhaste pooljuhtide juhtivust, kus vastassuunas liigub sama hulk elektrone ja auke, nimetatakse omajuhtivuseks. Nähtust rakendatakse termo- või fototakistis, mida omakorda saab kasutada temperatuuri ja valgustatuse elektrilisel registreerimisel.

Viies pooljuhti sobivaid lisandiaatomeid, saab tekitada lisandjuhtivuse. Kui neljavalentsele ränile lisada pisut viievalentset lisandit, näiteks fosforit (joonis 1.12. a), siis jääb räniaatomitest ümbritsetud fosforil üks elektron üle, sest talle ei leidu struktuuris kindlat kohta.

Joonis 1.12. a pooljuhtide elektrijuhtivus
Joonis 1.12. b Pooljuhtide elektrijuhtivus

Iga lisandiaatomi kohta jääb vabaks üks elektron, mis hakkab elektrivälja rakendamisel pooljuhis triivima. Sellises pooljuhis on põhilisteks laengukandjateks elektronid ja vastavat juhtivust nimetatakse laengukandjate negatiivse laengu tõttu n-juhtivuseks. Sünonüümideks on ka elektronjuhtivus ja doonorjuhtivus.

Lisades neljavalentsele põhiainele kolmevalentset lisandit (joonis 1.12. b), näiteks ränile boori, jääb räniaatomil booriga üks side moodustamata ja tekib auk. Vastavat juhtivust nimetatakse p-juhtivuseks, millel on veel samatähenduslikeks terminiteks auk- ja aktseptorjuhtivus.

Koos lisandjuhtivusega kaasneb alati ka omajuhtivus, mida püütakse üldjuhul võimalikult vähendada. Enamuslaengukandjateks on n-juhtivuse korral elektronid ja p-juhtivuse korral augud. Pooljuhtide elektrijuhtivus on seotud oluliselt ainete kristallstruktuuriga ja seetõttu pooljuhtseadiste tehnoloogia algab eriti puhaste ainete saamisest.

Kokkuvõte

Pooljuhid on ained, mille eritakistus on metallide ja dielektrikute vahepealne ning mille juhtivus sõltub oluliselt temperatuurist, valgustatusest ja lisanditest.

Sõltuvalt sellest, kas lisandi valents on suurem või väiksem kui põhiainel, saadakse vastavalt elektron- ja aukjuhtivus. Elektrivool pooljuhtides on elektronide ja aukude suunatud liikumine.

Ülesanded

Kui palju vabu elektrone tekib pooljuhis juurde, kui ränile lisada 1 mikrogramm fosforit? Fosfori molaarmass on 31 g/mol ja Avogrado arv NA = 6,02*1023 mol-1.
Omajuhtivuse korral on vabadeks laengukandjateks elektronid ja augud. Kumma arv on suurem?
Lisamaterjalid

2.4 p-n siire. Pooljuhtdiood

Kui tekitada pooljuhis kaks erineva juhtivusega osa, siis p- ja n-juhtivusega osade üleminekupiirkonda nimetatakse p-n siirdeks. Selline olukord saavutatakse erinevate lisandite sisseviimisega pooljuhtkristalli (dopeerimine ehk legeerimine). Siirdel hakkab toimuma laengukandjate vahetus. Doonorlisandiga n-osas on hulk elektrone, millel puudub kristallvõres sobiv koht. Need kohad on olemas aga kõrvalolevas p-osas. Elektronid hakkavad soojusliikumisest põhjustatud difusiooni toimel liikuma p-osas olevatele vabadele kohtadele, mille tulemusel enne neutraalne p-osa saab negatiivse laengu ja n-osa, kaotades elektrone, samasuguse positiivse laengu (joonis 1.13. a). Laengukandjate difusioon toimub ainult siirdes, sest seda hakkab takistama tekkiv elektriväli E→. See elektriväli soodustaks vähemuslaengukandjate liikumist läbi siirde, st elektronide liikumist p-osast n-ossa ja aukude liikumist n-osast p-ossa. Piirkihis puuduvad voolu tekkimiseks vajalikud laengukandjad ja olukorda võime vaadelda kui takistava kihi tekkimist erineva juhtivusega osade piiril.

Joonis 1.13.

Kui ühendada pooljuhi p-osaga vooluallika miinusklemm ja n-osaga plussklemm, siis siirde elektriväli tugevneb veelgi (joonis 1.13. b). Enamuslaengukandjad ei saa siiret üldse läbida. Väike hulk vähemuslaengukandjaid saab siiret läbida, põhjustades nõrga nn vastuvoolu. Pingestades p-n siirde päripidiselt (joonis 1.13. c), muudetakse elektrivälja suund siirdes eelnevaga võrreldes vastupidiseks, mis soodustab enamuslaengukandjate liikumist läbi siirde. Tekkinud pärivool on vastuvoolust oluliselt tugevam.

Joonis 1.14.

Joonisel 1.14. on graafik, mis näitab p-n siiret läbiva voolutugevuse sõltuvust pingest (pinge-voolu tunnusjoon). Eelpoolkirjeldatud p-n siiret rakendatakse pooljuhtdioodis. Pooljuhtdiood töötab ventiilina, mis laseb elektrivoolu läbi praktiliselt ainult ühes suunas.

Kokkuvõte

Pooljuhtdioodi olemus

Pooljuhtdioodis on p-n siire, mille põhiomaduseks on juhtida elektrivoolu ühes suunas.

Transistor

Transistor on pooljuhtseadis, mille abil saab tekitada, lülitada, võimendada ja muundada elektrisignaali (voolu).

Ülesanded

Dioodi tunnusjooned

Arvuta ränidioodi takistus joonise 1.14. põhjal pingetel 0,6 V ja 0,7 V. 

Missugused võiksid olla pooljuhtseadiste puudused?
Lisamaterjalid

2.5 Elektrist valgus ja valgusest elekter

p-n siirdel on peale pooljuhtdioodi mitmeid muid rakendusi. Siirde päripidisel pingestamisel võib eralduda valgus (valgusdiood) ja vastupidi, siirde valgustamisel võib tekkida elektromotoorjõud (fotorakk).

Hõõglambis muutub väga väikene osa, umbes 4% elektrienergiast valguseks. Paremaid tulemusi, umbes 15%, võib saavutada säästulambiga. Viimasel ajal saab poest osta ka LED-valgusteid, mille tehnilised näitajad on veel paremad. Valgusdiood – LED, lühend sõnast light emitting diode – on pooljuhtseadis, mis muudab elektrienergia optiliseks kiirguseks (infravalgus, nähtav valgus või ultravalgus). Valgusdioodis nagu tavaliseski dioodis on p-n siire. Traditsioonilises pooljuhtdioodis on pärivoolu korral energia eraldumist siirdes püütud minimeerida. Seevastu valgusdioodis muudetakse p-n siirdel elektronide ja aukude rekombineerumisel eralduv energia vahetult valguseks. Päripinge rakendamisel läbivad siiret enamuslaengukandjad. Ained püütakse valida selliselt, et toimuks võimalikult paljude elektronide ja aukude rekombinatsioon ning et selle protsessi käigus kiirguks just vajaliku värvusega valgus. Konstruktsioon peab tagama, et siirdel tekkinud kiirgus pääseks välja. Valgusdioodid võivad kiirata erinevat värvi või ka valget valgust. Nende eeliseks on väikesed mõõtmed, põrutuskindlus, pikk eluiga (tuhat korda pikem kui hõõglampidel), kiire süttimine ja vastupidavus sisse-välja lülitamistele. Puuduseks on kõrge hind ja kõrgete temperatuuride mittetalumine.

Joonis 1.15 a,b LEDi ehitus ja skeemitähis.
Joonis 1.15 c LED-lamp
Joonis 1.16 a CCD

Vastupidine protsess toimub fotorakus, kus siirdele langev valgus eraldab erimärgilised laengud, tekitades elektromotoorjõu. Seda nähtust kasutatakse valgusenergia muutmiseks elektriks. Kui fotorakud ühendada suuremaks süsteemiks, saame näiteks päikesepatarei või digikaamera pildisensori – CCD (charge-coupled device). Kui kaamerale on kirjutatud 10 Mpx, siis tähendab see, et sensoril on 10 miljonit imepisikest kujutist salvestavat fotorakku.

Joonis 1.16 b Päikesepatarei.
Joonis 1.16 c Fotoraku skeemitähis.

Inimene saab olulise osa informatsioonist valgusest nägemisaistingu abil. Selle info salvestamiseks saame kasutada ka digikaamerat, kus CCD muudab kujutise elektrisignaaliks ja salvestab selle mälus. Vajadusel saame salvestise uuesti taastada kujutisena näiteks LEDide abil. Nobeli 2009. aasta füüsikapreemia antigi CCD ja optilise kaabli arendamise eest.

Päikeselt saabub Maale hiiglaslik kiirgusenergia hulk, õhkkonna ülakihtides umbes 1400 J/s iga ruutmeetri kohta. Kui me suudaksime selle muuta elektrienergiaks, kaoksid inimkonna energiaprobleemid. Päikesepatareide efektiivsuse kasv võib muuta nende kasutamise Eestis majanduslikult efektiivseks.

Kokkuvõte

LED ehk valgusdiood

LEDis muutub elektrivoolu energia p-n siirdel erimärgiliste laengute
rekombinatsioonil vahetult valguseks.

Fotorakk

Fotorakus esineb valgusdioodiga vastupidine protsess, kus p-n siirdele langev valgus eraldab erineva märgiga laengukandjad, tekitades elektromotoorjõu.

Ülesanded

Valgusallikat iseloomustatakse valgusviljakusega, mis on kiiratud valgusvoo ja tarbitud võimsuse suhe. Valgusvoog arvestab ka inimsilma nägemisaistingu omapära. SIs on tema ühikuks luumenit vati kohta (lm/W). Arvuta hõõglambi, säästulambi ja LED-lambi valgusviljakused järgnevalt esitatud pakendite piltidel toodud andmete põhjal.
Loetle säästulambi puudusi võrreldes teiste valgusallikatega.
Missugused on LED-lampide eelised võrreldes teiste valgusallikatega?
Lisamaterjalid

3 Vahelduvvool

3.1 Vahelduvvoolu genereerimine

Joonis 1.17

Vahelduvvool on elektrivool, mille tugevus ja suund perioodiliselt muutuvad. Energiasüsteemides kasutatakse sinusoidaalset voolu (joonis 1.17.), mida väljendab voolutugevuse ajas muutumise võrrand, kus i on voolutugevuse hetkväärtus, Im voolutugevuse maksimaalne väärtus ja ω ringsagedus (võngete arv 2π sekundis).

(1.8.)

Tegemist on elektromagnetilise harmoonilise sundvõnkumisega, sest sinusoidaalselt muutuv vool tekib perioodiliselt muutuva elektromotoorjõu mõjul.

Vahelduvvoolu toodetakse vahelduvvoolugeneraatoriga, mille töö põhineb elektromagnetilise induktsiooni nähtusel. Kui asetada juhtivast materjalist kontuur (juhtmekeerd) pindalaga S magnetvälja magnetinduktsiooniga B, siis läbib kontuuri magnetvoog

EM. Nurk α kirjeldab kontuuri asendit magnetvälja jõujoonte suhtes. Magnetvoo muutumisel indutseeritakse kontuuris elektromotoorjõud, mille suurus sõltub magnetvoo muutumise kiirusest

Tehniliselt lihtsaim viis magnetvoogu muuta on panna kontuur magnetväljas pöörlema. Joonisel 1.18. a kujutatud asendis on kontuuri läbiv magnetvoog maksimaalne, sest α = 0 ja cos α = 1. Magnetvoog muutub harmooniliselt ja kõige kiiremini siis, kui kontuur on teinud veerand pööret. Sellel hetkel on ka indutseeritud elektromotoorjõud maksimaalne. Kui kontuur pöörleb nurkkiirusega

siis tekib temas samuti harmooniliselt muutuv elektromotoorjõud

(1.9.)

Joonis 1.18. a Vahelduvvoolu generaatori tööpõhimõte.
Joonis 1.18. b Pinge graafik

Elektromotoorjõu maksimaalne väärtus εm sõltub võrdeliselt magnetinduktsioonist, pindalast ja nurkkiirusest. Elektromotoorjõud on magnetvoo suhtes veerand perioodi nihkes nagu siinuse ja koosinuse graafikud.

Kui pöörleva kontuuri otsad ühendada tarbijaga, läbib teda vahelduvvool. Voolu tugevus on Ohmi seaduse järgi (valem 1.6.) määratud elektromotoorjõu ja vooluringi kogutakistuse suhtega

Voolu maksimaalväärtuse ja pinge maksimumi valemid on analoogsed alalisvoolu vastavate seostega.

(1.10.)

(1.11.)

Vooluallika sisetakistuseks r võime lugeda antud juhul generaatori pöörleva mähise takistust. 

Euroopa vahelduvvooluvõrkudes kasutatakse sagedust f = 50 Hz, seega ω = 314 rad/s.

Kokkuvõte

Vahelduvvool

Vahelduvvool on elektrivool, mille suund ja tugevus ajas perioodiliselt
muutub.

Vahelduvvoolu tekitamine

Vahelduvvoolu tekitamine põhineb elektromagnetilise induktsiooni nähtusel. Näiteks tekib magnetväljas pöörlevas juhtmekeerus sinusoidaalselt muutuv elektromotoorjõud. Põhiline osa elektrienergiast toodetakse vahelduvvoolugeneraatoritega, mille käitavad enamikul juhtudel auruturbiinid.

Ülesanded

Vahelduvvoolu võrgus on sagedus 50 Hz. Arvutage vahelduvvoolu ringsagedus ja periood.
Vahelduvvoolu generaator

Kui suur magnetvoog läbib kontuuri joonisel 1.18. a? Kui suur on magnetvoog läbi kontuuri, kui see sooritab veerand pööret, pool pööret, täispöörde?

Lahendus

Magnetvoog on definitsiooni järgi
Φ = B*S*cos(α),
kus Φ on magnetvoog, B on magnetinduktsioon, S on kontuuri pindala ja α on nurk magnetinduktsiooni B ja kontuuri S normaali vahel.
Jooniselt ei ole seda lihtne näha, aga peatüki tekstis on joonise kirjelduses kirjas, et „Joonisel 1.18. a kujutatud asendis on kontuuri läbiv magnetvoog maksimaalne, sest α = 0 ja cos α = 1.“ Järelikult on esialgses situatsioonis α = 0° ja cos α = 1 ning magnetvoog Φ = B*S.

Kui nüüd raam teeb veerand pööret (α = 360°/4 = 90°), siis cos(90°) = 0 ja magnetvoog Φ = 0.

Kui raam on teinud esialgse asendi suhtes pool pööret, siis α = 360°/2 = 180° ja cos(α) = -1, seega magnetvoog Φ = -B*S. See tähendab, et ta on sama suur kui alguses, aga teises suunas.

Kui raam sooritab täispöörde, siis α = 360° ja esialgne olukord on taastunud, Φ = B*S. Seda saab näha ka magnetvoo valemist, kui võtta cos(360°) = cos(0°) = 1.

Vahelduvvoolu generaator

Määrake joonise põhjal raami läbiva magnetvoo muutumise kiirus. Raam sooritab veerand pööret. Kas selles asendis magnetvoo muutumise kiirus on suurem või väiksem?

Lahendus

Magnetvoog on definitsiooni järgi Φ = B*S*cos(α), kus Φ on magnetvoog, B on magnetinduktsioon, S on kontuuri pindala ja α on nurk magnetinduktsiooni B ja kontuuri S normaali vahel. Jooniselt ei ole seda lihtne näha, aga peatüki tekstis on joonise kirjelduses kirjas, et „Joonisel 1.18. a kujutatud asendis on kontuuri läbiv magnetvoog maksimaalne, sest α = 0 ja cos α = 1.“ Järelikult on esialgses situatsioonis α = 0° ja cos α = 1 ning magnetvoog Φ = B*S.

Joonisel on antud ka pöörlemise nurksagedus, mis on ühtlasi ka nurga muutumise kiirus ω = α/t.

Mingi suuruse muutumise kiirus on tema esimene tuletis aja järgi. Magnetvoo muutumise kiirus on dΦ/dt = d/dt( B*S*cos( α(t) ) ). Kontuuri pindala ja magnetinduktsioon on konstantsed, ajaga muutub nurk α = α(t). Nurga muutumise kiirus ongi ω ja α(t) = ω*t (paneme tähele, et sellel võrrandil võiks olla veel konstantne faas lisatud, aga kuna algtingimused on t = 0 s ja α = 0°, siis see on null, kuna võrrand on rahuldatud). Asendame nurga sõltuvuse ajast magnetvoo tuletise võrrandisse ja saame (tuletise võtmisel tuleb kasutada liitfunktsiooni tuletise valemit ning meeles pidada, et d/dx(cos(x)) = - sin(x) ):

dΦ/dt = d/dt( B*S*cos( α(t) ) ) = B*S*d/dt( cos(ω*t) ) = -B*S*sin(ω*t)*d/dt(ω*t) = -B*S*ω*sin(ω*t) = -B*S*ω*sin(α).

Meid huvitab magnetvoo muutumise kiirus algasendis (α = 0°, sin(0°) = 0) ja pärast veerand pööret (kui α = 90°, sin(90°) = 1). Algasendis α = 0° ja dΦ/dt = -B*S*ω*sin(0°) = 0. Peale veerandpööret α = 90° ja dΦ/dt = -B*S*ω*sin(90°) = -B*S*ω.

Nüüd loeme uuesti ülesande teksti ja näeme, et soovitakse teada ka kummas asendis on see kiirus suurem. Kuigi peale veerandpööret on muutumise kiirus negatiivne ja seetõttu väiksem kui esialgne nulline muutumise kiirus, võiks siiski öelda, et peale veerandpööret muutub magnetvoog kiiremini, sest magnetvoo muutumise kiiruse absoluutväärtus on suurem.

Vahelduvvoolu generaator

Määrake joonise 1.18. a põhjal raamis tekkiva induktsioonivoolu suund. Tooge esile lahenduse kõik etapid.

Lahendus

Ülesande võib lahendada kasutades Flemingi parema käe reeglit generaatorite jaoks (vt pilt), kus pöial näitab liikumise suunda, teine sõrm näitab välja suunda ja kolmas näitab voolu suunda.

Et aga eelmistest ülesannetest on teada, et esialgses horisontaalses asendis on voolutugevus null, siis vaatame olukorda hetkel, mil tehtud on juba veerand pööret ja kontuur on vertikaalne. Seda reeglit rakendades saame, et raami alumises servas, mis liigub meist eemale, on vool suunatud vasakule ja ülemises servas, mis liigub meie suunas on vool suunatud paremale. Järelikult vertikaalses osas on vool suunatud üles. Kui nüüd raam on mõnes teises asendis, siis jääb voolu suund samaks, ehk vaadates eest küljest, kus magnetväli on otse ülevalt alla, on vool alati päripäeva, isegi kui kõik suunad ei ole enam risti.

Vertikaalses asendis on voolutugevus maksimaalne ja kui raam pöördub nii palju, et ta jõuab horisontaalseks, siis on voolutugevus jälle null. Edasise pöörlemise korral on aga ikka nii, et ülemises pooles on vool paremale ja alumises vasakule, isegi kui raami servad vahetavad rollid ja see, kes oli enne ülemine on nüüd alumine. Nii tekib vahelduvvool.

Hetkel, kui vahelduvvoolu generaatori pöörlevat mähist läbiv magnetvoog on maksimaalne, mähises induktsiooni elektromotoorjõud puudub, kui aga magnetvoog puudub, siis on emj maksimaalne. Miks see nii on?
Miks vahelduvvoolu generaatori mähises on tavaliselt palju juhtmekeerde?
Lisamaterjalid

3.2 Voolutugevuse, pinge ja võimsuse efektiivväärtused

Kui paigalolevat juhti läbib vool, eraldub temas elektrivoolu tööga võrdne soojushulk

Valem kehtib alalisvoolu korral, kuid vahelduvvoolu tugevus ajas muutub. Seetõttu tuleb vahelduvvoolu puhul valemisse panna voolutugevuse ruudu keskmine väärtus. Trigonomeetriliste teisendustega saab näidata, et siinuse absoluutväärtuse keskmine ühe perioodi jooksul on 1/√2.

Kui üheoomist takistit läbib alalisvool tugevusega 1 A, eraldub takistis 1 sekundi jooksul 1 džaul energiat. Kui sama takistit läbib sama aja jooksul vahelduvvool maksimaalväärtusega

Joonis 1.19.

eraldub ka sama hulk energiat (joonis 1.19.). Vahelduvvoolu tugevuse efektiivväärtuseks nimetatakse sellist alalisvoolu tugevust, mille korral eraldub vahelduvvooluringis võrdse aja jooksul sama suur soojushulk kui alalisvoolu korral.

(1.12.)

Vahelduvvoolu pinge muutub ajas samuti siinuseliselt ja pinge efektiivväärtus on

(1.13.)

Koduse pistikupesa klemmidel peaks olema pinge 230 V. Siin on tegemist pinge efektiivväärtusega. Teataval hetkel on vastava siinuseliselt muutuva pinge maksimaalväärtus √2 korda suurem, st Um ≈ 325 V. Takistil eraldunud võimsuse saame arvutada valemiga

(1.14.)

Alalisvoolu korral kehtisid Ohmi seadused vooluringi osa ja kogu suletud vooluringi kohta vastavalt 

ja

Seosed kehtivad ka vahelduvvoolu hetkväärtuste jaoks, sest väga väikese ajavahemiku jooksul pinge ja voolutugevus ei jõua oluliselt muutuda. Hetkväärtusi tähistame väikeste tähtedega. Voolutugevuse hetkväärtus on

Kui voolutugevuse maksimum saabub samal ajal pingemaksimumiga, saame voolutugevuse maksimumi

millest voolutugevuse efektiivväärtuse jaoks saame

Efektiivväärtused on kasutusele võetud seetõttu, et nende abil saame vahelduvvoolu arvutustes kasutada alalisvoolu valemeid.

Vahelduvvoolu ampermeeter ja voltmeeter näitavad meile samuti efektiivväärtusi. Oluline tingmärk mõõteriista skaalal on vooluliik. Vahelduvvoolu tähiseks on ~ ja alalisvoolul –.

Kui vahelduvvooluringis on induktiivpool, siis pinge kasvades voolutugevuse kasv eneseinduktsiooni (EM lk 69) tõttu hilineb. Voolutugevuse maksimum jääb pingemaksimumist maha ja vooluringis eralduvat võimsust ei saa valemi 1.14. abil enam arvutada. Aga kui vahelduv­voolu­­ahelas on kondensaator, siis voolutugevuse maksimum saabub pingemaksimumist varem ja voolutugevus ei võngu samuti sünkroonselt pingega.

Kokkuvõte

Vahelduvvoolu tugevuse efektiivväärtus

Vahelduvvoolu tugevuse efektiivväärtus on selline alalisvoolu tugevus, mille korral juhis eraldub samasugune võimsus kui vahelduvvoolu korral.

Vahelduvvoolu pinge ja voolutugevuse efektiivväärtused

Pinge ja voolutugevuse maksimaalväärtuste ning efektiivväärtuste vahel on järgmised seosed:

ja

Vahelduvvoolu mõõteriistad näitavad mõõtmisel efektiivväärtusi.

Ülesanded

Mõõtes vahelduvvoolu voltmeetriga seinakontaktis pinget, saime näiduks 241 V. Arvutage pinge maksimaalväärtus. Missuguse vähima ajavahemiku jooksul saabub pingemaksimum ja -miinimum? Võrgupinge sagedus on 50 Hz.
Pinge 241 V mõõdeti voltmeetriga, mille mõõtepiirkond oli 250 V ja täpsusklass 2,5. Arvutage mõõtmise absoluutne ja suhteline piirviga.
Vahelduvvoolu graafikuks on sinusoid, mille keskmine väärtus ajas on 0. Kuidas on siis üldse võimalik soojusenergia eraldumine elektripliidis?
Vahelduvvoolu ja alalisvoolu generaatoritel on mõlemal nimipinge 115 V. Kumma generaatoriga ühendamiseks peaks juhtmete isolatsioonikiht olema paksem? Miks?
Lisamaterjalid

3.3 Trafo. Elektrienergia ülekanne

Elektrienergiat on mugav kasutada, aga keeruline suurel hulgal salvestada. Seetõttu tarnitakse elektrienergia jaotusvõrgu vahendusel elektrijaamast otse lõpptarbijani. Ent mida pikemad on liinid, seda suuremad on ka kaod. Ülekandmisel suurtele kaugustele ja paljudele tarbijatele esineb ebasoodsaid asjaolusid. Koos pikkusega kasvab juhtme takistus ja soojuslikud energiakaod ning väheneb pinge. Tarbijad ühendatakse rööbiti, mis suurendab voolutugevust generaatoris ja vähendab tarbimise kasvamisel klemmipinget. 19. sajandi lõpukümnendil jõuti järeldusele, et oleks parem kasutada vahelduvvoolu ja tõsta selle pinge enne ülekannet võimalikult kõrgele. Pinge tõstmiseks oli äsja leiutatud transformaator ehk trafo.

Juhis eralduv soojushulk on võrdeline voolutugevuse ruuduga (Q = I2Rt). Vähendades voolutugevust ülekandeliinides 2 korda, vähenevad soojuskaod 4 korda. Kui aga tahame edastada eelnevaga võrdset võimsust P = UI, peame pinget tõstma 2 korda.

Trafo on elektromagnetilise induktsiooni nähtusel põhinev seadis vahelduvpinge muutmiseks. Trafo koosneb vähemalt kahest erineva keerdude arvuga n1 ja n2 raudsüdamikule keritud mähisest (joonis 1.20. a). Vooluallikaga ühendatud mähist nimetatakse primaarmähiseks ja tarbijaga ühendatud mähist sekundaarmähiseks.

Joonis 1.20. a - lülitus vooluallika ja tarbijaga (hõõglamp), b - skeemitähised

Primaarmähist läbiv vahelduvvool tekitab muutuva magnetvälja, mida mähise sees olev raudsüdamik annab edasi sekundaarmähisesse. Muutuv magnetväli tekitab sekundaarmähises muutuva elektromotoorjõu. Kui sekundaarmähisega ühendada tarbija, läbib teda muudetud pingega vahelduv­vool.

Magnetvoo muut on mõlemas mähises ligikaudu võrdne. Seega mähiste pinged on võrdelised keerdude arvuga ja ligikaudu pöördvõrdelised voolutugevustega.

(1.15.)

Kui vahetada vooluallika ja tarbija kohad, saame pinget vähendava trafo (joonis 1.20. a) asemel pinget tõstva trafo.

Generaatori pinge ei ole ülekande jaoks piisav ja seetõttu tõstetakse elektrijaamas trafoga pinge vajalikule tasemele (näiteks 330 kV). See rakendatakse kõrgepinge ülekandeliinidele. Lähenedes tarbijatele, vähendatakse alajaamades järk-järgult pinget, kuni pistikupessa jõudva 230 V-ni. Elektrijaamad ei tegutse eraldi, vaid on ühendatud ühtsesse võrku teiste Eestis asuvate jaamadega ja ka Venemaa ning Lätiga. Soomega saame vahetada elektrienergiat kõrgepingelise alalisvooluna kahe merekaabli kaudu.

Trafos puuduvad liikuvad osad, energiakaod mähistes ja südamikus on püütud viia minimaalseks. Võimsate trafode kasutegur

küünib kuni 99%-ni.

Kokkuvõte

Trafo

Trafo on elektriseadis vahelduvpinge muutmiseks ja see töötab elektromagnetilise induksiooni nähtusel. Ühe ja sama trafoga on võimalik vahelduvpinget nii tõsta kui ka langetada.

Ülesanded

Transformaatori primaarmähises on 2300 keerdu. Mitu keerdu peaks olema sekundaarmähises, et muuta tavaline võrgupinge 10-voldiseks? Tavaline võrgupinge on 230 V.
Mitu korda muudab (suurendab/vähendab) vahelduvpinget joonisel 1.20. a kujutatud trafo?
Joonisel 1.20. a kujutatud trafo primaarmähise vool on 1 A. Kui suur vool on sekundaarmähises, kui trafo kasutegur on 70%?
Miks peab pinget madaldava trafo sekundaarmähis olema jämedamast traadist?
Miks ei ole otstarbekas elektrijaama trafoga pinget tõsta ükskõik kui kõrgele?
Miks on trafo mähised vasest ja südamik rauast?
Kuidas toimub autos küttesegu süütamiseks vajaliku kõrge pinge saamine akust pingega 12 V?
Lisamaterjalid

3.4 Elektrimootor. Elektriohutusest

Elektrimootor muudab elektrienergia mehaaniliseks tööks. Elektrimootori töö põhineb voolu ja magneti ning kahe voolu vahelise vastastikmõju kasutamisel.

Paigutame magneti pooluste vahele juhtivast materjalist raami (mähise), mis saab pöörelda ja millest saab elektrivoolu läbi juhtida (joonis 1.21. a). Paigalolev osa staator ja pöörlev osa rootor on elektriliselt ühendatud kommutaatori abil. Kommutaator koosneb paigalolevatest harjadest, mis on surutud vastu poolrõngakujulisi lamelle. Harjad on ühendatud vooluallikaga ja lamellid rootorimähisega.

Vooluga juhile mõjub magnetväljas jõud (EM lk 29). Jõu suunda saab määrata nn vasaku käe reegliga. Raami vastaskülgedele mõjuvad jõud on vastassuunalised. Tekkinud jõudude paar pöörab raami veerand pööret päri- päeva. Selles asendis (joonis 1.21 b) jõud raami enam ei pööra, kuid inertsi tõttu pöörleb lamellidega ühendatud raam edasi ja muudab voolu suuna raamis vastupidiseks. Raamile hakkab uuesti mõjuma teda päripäeva pöörav jõudude paar, st raam jääbki pöörlema.

Joonis 1.21. a
Joonis 1.21. b

Eeltoodud põhimõttel töötab nii alalisvoolumootor kui ka nn universaalmootor (joonis 1.22. a), milles pöörleva rootorimähisega jadamisi on ühendatud magnetvälja tekitav paigalseisev staatorimähis. Kui rakendame mootorile vahelduvpinge (joonis 1.22. b), siis muutub voolu suund mõlemas mähises ja rootori pöörlemissuund jääb samaks.

Joonis 1.22. a Universaalmootor
Joonis 1.22. b Lülitusskeem

Universaalmootor on kasutatav nii alalisvoolu kui ka vahelduvvoolu korral. See pole küll kõige parema kasuteguriga, kuid pöörlemiskiiruse reguleeritavuse ja odavuse tõttu leiab sageli rakendust kodumasinates ja elektrilistes käsitööriistades. Tööstuses kasutatakse rohkem vahelduvvoolu asünkroonmootoreid (vt lisandused lk 82).

Elektrikahjus­tus­teks on kõige sagedamini tulekahjud, elektrilöögid ning pingekõikumistest ja voolukatkes­tustest põhjustatud arvutite jm rikked. Tulekahjud tekivad tavaliselt juhtmete halbade kontaktide, küttekehade järelevalve puudumise ja vanade elektrisüsteemide ülekoormamise tõttu. Elektrilöögi saanud inimese kahjustusteks on põletus, gaasi tekkimine veres, südame seiskumine või lämbumine lihaste krambi tagajärjel. Inimese närvisüsteemi ja lihaste talitus põhineb elektrisignaalidel, mille elektrilöök võib rivist välja viia, seetõttu ongi inimese jaoks ohtlikum vahelduvvool. Voolutugevus 100 mA on juba surmavalt ohtlik.

Elektrist tulenevate õnnetuste levinumad põhjused on elektriliste majapidamisriistade isolatsiooni rikkiminek, elektri kasutamine niisketes ruumides, tormide tõttu ülekandeliinide mahalangemine, välgulöök, töötamine elektriliinide vahetus läheduses ja tähelepanematus.

Kokkuvõte

Elektrimootor

Elektrimootor muudab elektrienergia mehaaniliseks tööks. Elektrimootoris kasutatakse voolu ja magnetvälja vastastikmõju.

Ülesanded

Elektrimootori rootoriks on ruudukujuline raam küljepikkusega 1 dm. Arvutage raami ühele küljele mõjuv maksimaalne jõud, kui voolutugevus raamis on 2 A ja staator tekitab magnetvälja 0,1 T.
Alalisvoolumootori tööpõhimõte, joonis

Tehke joonisega 1.21. a analoogne joonis, kui raam on teinud pool pööret. Määrake raamile mõjuvate jõudude suunad ja tähistage need joonisel.

Miks ei koosne rootorimähis tavaliselt ühest, vaid paljudest juhtmekeerdudest?
Mootoris tekitatakse magnetväli tavaliselt raudsüdamikule keritud mähisega. Miks?
Lisamaterjalid

4 Molekulide soojusliikumine

4.1 Temperatuur

Tihti kasutatakse vestluses sõnu soe ja külm. Kumb on soojem, kas soe talv või külm suvi? Ütlus „kraanivesi on kuum” tähendab, et vesi on soojem kui seda katsuv käsi. Täpsemate väidete korral kasutatakse mõistet temperatuur, mille määramiseks on juba väga ammu valmistatud mõõteriistu – mitmesuguseid termomeetreid. Termomeeter mõõdab soojuspaisumist, termoelektromotoorjõu tekkimist, infrapunakiirgust või muud temperatuurist sõltuvat suurust. Arusaam temperatuuri olemusest tekkis aga hiljem, 19. sajandil koos teadmiste avardumisega ainete siseehitusest.

Joonis 1.23.

Oletame, et õnnevalamisel kallasime külma vette teatava koguse sulatina (joonis 1.23.). Vee temperatuur tõusis kiiresti ja sai võrdseks toatemperatuuriga ning edasi mingeid muutusi enam ei toimunud. Kuum keha (tina) andis teatud hulga soojust külmale kehale (veele). Tina temperatuur alanes ja vee temperatuur tõusis seni, kuni nende temperatuurid võrdsustusid. Kuna nende ühine temperatuur osutus võrdseks toatemperatuuriga, siis edasisi muutusi ei toimunud ja süsteem jäi tasakaalu. Soojus läheb iseenesest üle soojemalt kehalt külmemale, kuni nende temperatuurid võrdsustuvad. Selline olek vastab soojuslikule tasakaalule. Keha temperatuur iseloomustab soojusliku tasakaalu olekut. Tal on ühesugune väärtus soojuslikus tasa­kaalus oleva süsteemi kõikides osades.

Temperatuur oleneb keha koostisosakeste energiast – siseenergiast.

Euroopas kasutatakse temperatuuri mõõtmisel ühikuna Celsiuse kraadi. Temperatuurile 0 ºC vastab jää sulamine ja 100 ºC-le vee keemine normaalrõhul.

Joonis 1.24. a Piirtemperatuur - absoluutne null
Joonis 1.24. b Celciuse ja Kelvini võrdlus

17. ja 18. sajandi vahetusel uuris prantsuse füüsik Guillaume Amonton gaasi rõhu sõltuvust temperatuurist jääval ruumalal (joonis 1.24. a). Ta leidis, et temperatuuri vähenedes kahanes rõhk lineaarselt. Mingil temperatuuril, –273,15 °C, peaks gaasi rõhk muutuma nulliks. Seda temperatuuri alumist piiri nimetatakse absoluutseks nulliks. Inglise füüsik lord Kelvin võttis kasutusele nn absoluutse temperatuuriskaala FLA. Selle skaala nullpunktiks on absoluutne null ja ühik 1 K (üks kelvin) on võrdne Celsiuse skaala ühikuga. Temperatuur T Kelvini skaalas on alati positiivne ja Celsiuse temperatuurist 273 võrra suurem.

(1.16)

Rõhu telje nihutamisel absoluutsesse nulli saame lineaarsest sõltuvusest võrdelise. Jääval ruumalal on gaasi rõhk võrdeline absoluutse temperatuuriga.

Kokkuvõte

Soojus levib

Soojus levib iseenesest soojemalt kehalt külmemale, kuni temperatuurid võrdsustuvad.

Soojuslik tasakaal

Soojusliku tasakaalu korral on temperatuur keha kõikides osades ühesugune.

Madalaim võimalik temperatuur

On olemas kõige madalam piirtemperatuur absoluutne null, millest keha temperatuur on alati suurem.

Temperatuuri ühik SI süsteemis

Rahvusvahelise mõõtühikute süsteemi temperatuuri põhiühik on 1 K (kelvin). Kelvini absoluutses temperatuuriskaalas on temperatuurid umbes 273 võrra suuremad võrreldes Celsiuse skaalaga .

Ülesanded

Teisenda toatemperatuur 20 °C ja kehatemperatuur 36 °C kelviniteks.
Termotuumareaktsioon toimub temperatuuril 108 K. Mitu kraadi Celsiust see on?
Missugune on kõige madalam ja kõige kõrgem temperatuur?
Missugustel füüsikalistel nähtustel lisaks eelpool nimetatutele võiks põhineda termomeetri töö?
Lisamaterjalid

4.2 Ideaalne gaas

Reaalset looduses esineva gaasi lihtsamaks uurimiseks ja mõistmiseks kasutatakse ideaalse gaasi mudelit. Ideaalse gaasi puhul ei arvestata molekulide mõõtmeid ja nendevahelist vastastikmõju. Selle tingimuse ligikaudseks täitmiseks peaks gaas olema piisavalt hõre ja mitte liiga madalal temperatuuril. Ideaalseks gaasiks võib näiteks lugeda kuiva õhku tavalisel temperatuuril ja rõhul.

Joonis 1.25.

Olgu suletud anumas (joonis 1.25.) ideaalne gaas, mille molekulid liiguvad kaootiliselt ja põrkuvad elastselt anuma seintega. Mõtteliselt eraldatud osas ruumalaga V on N molekuli igaüks massiga m0. Anuma seinale pindalaga S lähenevate molekulide keskmine kiirus on v.

Proovime hinnata molekulide põrgetest tulenevat anuma seinale avaldatavat rõhku. Seinaga jõuavad aja t jooksul põrkuda pooled molekulidest, mis ei asu kaugemal kui

Mehaanikast on teada (M), et impulsi muut elastsel põrkel on 2m0v. Kehale mõjuv jõud (M) on võrdne impulsi muutumise kiirusega.

ja ühe molekuli poolt seinale avaldatav jõud on

Kogu seinale mõjuva jõu saame, korrutades selle põrgete arvuga N/2. Seinale avaldatav jõud

Arvestades, et molekulide kontsentratsioon

saame rõhuks

Arutluses eeldasime, nagu liiguksid molekulid ühes sihis. Tegelikult pole kaootilise liikumise korral ükski suund eelistatud ja täpsema tuletuskäigu korral saame:

(1.17.)

Valem annab ideaalse gaasi rõhu sõltuvuse mikroparameetritest: kontsentratsioonist, molekuli massist ja kiirusest. Rõhk kui makroparameeter on mõõdetav näiteks baromeetri või manomeetriga.

Kui võtame kasutusele mõiste molekulide keskmine kineetiline energia  

saame:

(1.18.)

Ideaalse gaasi rõhk on võrdeline molekulide kaootilise liikumise keskmise kineetilise energiaga.

Eelmises õppetükis saime teada, et gaasi rõhk oli ka võrdeline absoluutse temperatuuriga. Kokkuvõtvalt saab järeldada, et ideaalse gaasi molekulide keskmine kineetiline energia on võrdeline gaasi absoluutse temperatuuriga:

(1.19.)

kus suurust k = 1,38·10-23 J/K nimetatakse Boltzmanni konstandiks.

Valemis 4.17 esinev suurus v2 on molekulide kiiruste ruutude keskmine väärtus. Ruutjuur sellest on ruutkeskmine kiirus:

(1.20.)

Kokkuvõte

Ülesanded

Gaasi temperatuur muutus 20 °C kuni temperatuurini 200 °C. Mitu korda muutus temperatuur Celsiuse ja Kelvini skaala põhjal? Mitu korda suurenes rõhk ja gaasimolekulide keskmine kineetiline energia?
Balloonis on hapnik normaaltingimustel (0 °C ja 105 Pa). Arvuta molekulide keskmine kineetiline energia, ühe molekuli mass, kiiruste ruutude keskmine väärtus ja ruutkeskmine kiirus.
Loetlege mikroparameetreid, mis määravad gaasi rõhu.
Klassi õhus esineb nii lämmastiku kui ka hapniku molekule. Missuguse aine molekulid liiguvad kiiremini? Põhjendage.
Lisamaterjalid

4.3 Ideaalse gaasi olekuvõrrand

Gaasiga toimuvate protsesside käigus võivad muutuda selle rõhk, ruumala ja temperatuur – olekuparameetrid. Näitame, et ideaalse gaasi olekuparameetrid on omavahel seotud nn ideaalse gaasi olekuvõrrandiga.

Valemitest  1.17, 1.18 ja 1.19 saame rõhu jaoks:

Molekulide arvu saame avaldada ainehulga ja Avogadro arvu järgi:

kus m on gaasi mass ja M molaarmass. Asendades ja avaldades, saame rõhu ja ruumala korrutiseks:

Suurust R = NAk = 8,31 J/mol K nimetatakse gaasikonstandiks ja seega:

(1.21.)

Ideaalse gaasi rõhu ja ruumala korrutis on võrdeline tema absoluutse temperatuuriga. Kui me vaatleme antud gaasikogust kahes erinevas olekus, saame olekuvõrrandi teise kuju:

(1.22.)

Antud gaasikoguse rõhu ja ruumala korrutis jagatud absoluutse temperatuuriga on jääv suurus. Viimase valemi kontrolliks on vaja määrata gaasi ruumala, mõõta manomeetriga rõhk ning termomeetriga temperatuur (joonis 1.26.). Valemi 1.21. kontrollimiseks peab määrama gaasi massi ja teadma molaarmassi (piisab ka ainehulgast).

Joonis. 1.26. Katseseade gaasi seaduste uurimiseks.

Gaaside omadused sõltuvad temperatuurist ja õhurõhust. Seetõttu on võetud kasutusele mõiste normaaltingimused: temperatuur 0°C ≈ 273 K ja rõhk 760 mmHg ≈ 1,01·105 Pa. Ühe mooli gaasi ruumala normaaltingimustel on 22,4 liitrit.

Kokkuvõte

Ideaalse gaasi olekuvõrrand

Ideaalse gaasi olekuvõrrand ühendab omavahel makroskoopilised olekuparameetrid rõhu, ruumala ja absoluutse temperatuuri. Ideaalse gaasi rõhu ja ruumala korrutis on võrdeline tema absoluutse temperatuuriga

kus on gaasi mass, molaarmass ja gaasikonstant.

Ideaalse gaasi rõhk, ruumala ja tempratuur

Antud ideaalse gaasikoguse rõhu ja ruumala korrutis jagatud absoluutse temperatuuriga on jääv suurus

Ülesanded

Balloonis ruumalaga 200 liitrit on 0,4 kg argooni temperatuuril 295 K. Arvutage argooni rõhk, kui tema molaarmass on 0,04 kg/mol.
Kindla hulga ideaalse gaasi olekuparameetrid muutusid. Rõhk vähenes kaks korda ja absoluutne temperatuur suurenes kaks korda. Mitu korda muutus gaasi ruumala? Kas see suurenes või vähenes?
Kahes sama suures anumas on ideaalne gaas samal temperatuuril. Ühes on 32 g hapnikku ja teises 28 g lämmastikku. Kumma gaasi rõhk on suurem?
Selgel suvepäeval unustati murule kaks ühesugust tühja plastpudelit. Hilisõhtuks oli üks neist tõmbunud kortsu, teine oli aga endise kujuga. Põhjendage nähtust, kasutades olekuparameetreid.
Lisamaterjalid

4.4 Isoprotsessid

Isoprotsessi käigus ei muutu üks olekuparameetritest ja vastav parameeter taandub gaasi olekuvõrrandist välja.

Isotermilise protsessi käigus ei muutu temperatuur. Saame ideaalse gaasi jaoks võrrandi:

millest järgnev valem annab pöördvõrdelise sõltuvuse rõhu ja ruumala vahel (joonis 1.27. a).

1.27a Isoterm
1.27b Isobaar

Isobaarilise protsessi käigus ei muutu rõhk. Saame gaasi jaoks võrrandi:

millest järgnev valem väljendab ruumala võrdelist sõltuvust absoluutsest temperatuurist (joonis 1.27. b).

1.27c Isohoor

Isohoorilise protsessi käigus ei muutu ruumala. Saame võrrandi:

millest järgnev valem väljendab ideaalse gaasi rõhu võrdelist sõltuvust absoluutsest temperatuurist (joonis 1.27. c).

Kokkuvõte

Isoprotsess

Isoprotsessi käigus ei muutu keha üks olekuparameetritest.

Isotermiline protsess

Isotermilise protsessi käigus ei muutu temperatuur ja ideaalse gaasi rõhk on pöördvõrdeline ruumalaga:

Isobaariline protsess

Isobaarilise protsessi käigus ei muutu rõhk ja ideaalse gaasi ruumala on võrdeline absoluutse temperatuuriga:

Isohooriline protsess

Isohoorilise protsessi käigus ei muutu ruumala ja ideaalse gaasi rõhk on võrdeline absoluutse temperatuuriga:

Ülesanded

Isotermilises protsessis suureneb ideaalse gaasi ruumala 2 korda. Mitu korda suureneb või väheneb gaasi rõhk?
Suletud silindris on hõre gaas ning hõõrdevabalt liikuv kolb. Mitu korda suureneb silindris oleva gaasi ruumala, kui temperatuur muutub miinus kahekümnelt pluss kahekümnele kraadile Celsiusele?
Tooge näide protsessist, milles gaasi rõhk ja temperatuur muutuvad, aga ruumala ei muutu.
Gaasi võib kokku suruda aeglaselt või kiiresti. Kuidas peaks seda tegema, et protsess oleks isotermiline? Põhjendage.
Lisamaterjalid

4.5 Siseenergia ja selle muutumise viisid

Kõik ained koosnevad osakestest, mis liiguvad kaootiliselt ja mõjutavad üksteist. Järelikult omavad kehade koostisosad nii kineetilist kui ka potentsiaalset energiat. Keha siseenergiaks nimetatakse tema kõikide koostisosakeste kineetiliste ja potentsiaalsete energiate summat. Seda energiat vaadeldakse kehaga seotud taustsüsteemi suhtes.

Vastastikmõju potentsiaalset energiat on raske arvutada. Seepärast toome näite ideaalsest gaasist, mis koosneb ühesugustest üksikuna esinevatest aatomitest, ehk üheaatomilisest ideaalsest gaasist. Ideaalse gaasi molekulid ei mõjuta üksteist (potentsiaalne energia on 0) ja sellise gaasi siseenergia on kõikide molekulide kineetiliste energiate summa. Siseenergia leidmiseks tuleb molekuli keskmine kineetiline energia korrutada molekulide (antud juhul aatomite) arvuga.

Üheaatomilise ideaalse gaasi siseenergia on võrdeline absoluutse temperatuuriga. Kui ideaalse gaasi molekulis on rohkem aatomeid, siis võrdelisus absoluutse temperatuuriga jääb kehtima, aga võrdetegur on erinev. Näiteks kaheaatomilise gaasi korral on see 32 asemel 52. Siseenergia on suurem seetõttu, et kaheaatomilise gaasi puhul lisanduvad võnkumise ja pöörlemise energiad.

Siseenergia sõltub ainult keha või kehade süsteemi siseolekust. Siseenergia hõlmab kõigi süsteemi osakeste, näiteks molekulide, aatomite, ioonide ja vabade elektronide liikumise, kineetilise ning vastastikmõju potentsiaalse energia, samuti nende sisestruktuuriga seoses oleva elektronkatte, tuuma jne energia. Rakenduste korral on oluline siseenergia muut, seetõttu jäetakse tavaliselt arvestamata need komponendid, mis uuritavas protsessis ei muutu. Soojusliku tasakaalu olekus on siseenergial kindel väärtus, siseenergia on olekufunktsioon. Siseenergia seob omavahel makro- ja mikrosuurused ning soojusõpetuse mehaanikaga.

Kui keha on soojusvahetuses teiste kehadega soojusjuhtivuse, konvektsiooni ja soojuskiirguse kaudu, nimetatakse saadud või ära antud siseenergiat soojushulgaks.

Soojushulk on siseenergia hulk, mille keha saab või annab ära soojusülekandel.

Jalgrattakummi pumpamisel kokkusurutud õhk ja pump soojenevad. Kuum gaas teeb mootoris paisudes tööd siseenergia vähenemise arvelt ja jahtub. Keha siseenergia muutmiseks on kaks võimalust – soojushulga saamine või äraandmine ja mehaaniline töö. Järgnevatel fotodel on raudlati temperatuuri ja sisenergia suurendamine soojushulga saamisega koldes ning lati töötlemisel ketaslõikuriga.

Kokkuvõte

Keha siseenergia

Keha siseenergia on tema kõikide koostisosakeste kineetiliste ja potentsiaalsete energiate summa.

Ideaalse gaasi siseenergia

Ideaalse gaasi siseenergia on võrdeline tema absoluutse temperatuuriga.

Soojushulk

Soojushulk on siseenergia, mille keha saab või annab ära soojusvahetuses teiste kehadega.

Ülesanded

Arvutage 80 g argooni siseenergia temperatuuril 127 °C. Argooni massiarv on 40.
Hermeetiliselt suletud kilekotis tõusis õhu temperatuur päikse käes 10 °C-lt kuni 30 °C-ni. Mitu korda suurenes/vähenes õhu siseenergia?
Miks reaalse gaasi siseenergia sõltub peale temperatuuri ka ruumalast?
Kas prootonite ja neutronite vastastikmõju energia aatomituumas on ka siseenergia?
Lisamaterjalid

5 Termodünaamika (soojusenergia)

5.1 Gaasi töö. Soojushulk

Joonisel 1.28a on pealt lahtine gaasi täis silinder, milles saab hõõrdevabalt liikuda kolb. Kui gaasi piirituslambiga kuumutada, siis gaas paisub ja lükkab kolbi ülespoole. Kolvile mõjuv jõud teeb tööd

milles ∆V on ruumala muut. Isobaarilise protsessi korral on gaasi töö

(1.23.)

1.21a  
1.21b  

Joonisel 1.28. b on selle protsessi graafik pV-teljestikus. Graafikult on näha, et p∆V on ühtlasi arvuliselt võrdne graafiku ja ruumala telje vahelise ristküliku pindalaga. Sama kehtib ka teiste protsesside, näiteks isotermilise korral (joonis 1.28. c).

1.21c  

Mehaanilist tööd tehakse alati mingi teise energia arvel. Joonisel 1.28. a on selleks piirituse põlemisel eraldunud soojushulk. Kui gaasil lastakse paisuda, aga mingit energiat juurde ei anta, toimub protsess gaasi siseenergia vähenemise arvel ja gaasi temperatuur väheneb. Toodud näidete põhjal järeldub, et nii töö kui ka soojushulk muudavad keha siseenergiat.

Kütuse põlemise, gaasi kondenseerumise, vedeliku tahkumise ja keha jahtumisega kaasneb soojushulga eraldumine. Need soojushulgad on võrdelised keha massiga. Keha jahtumisel eraldunud soojushulk on lisaks võrdeline temperatuuri muuduga. Vt alljärgnevaid valemeid.

Põlemine

kus r – kütuse kütteväärtus

Aurustumine ja kondenseerumine

kus L – aurustumissoojus

Sulamine ja tahkumine

kus λ – sulamissoojus

Temperatuuri muutus

kus c – erisoojus

Kokkuvõte

Töö isobaarilises protsessis

Isobaarilises protsessis on gaasi töö

Gaas teeb tööd

Gaas teeb tööd siis, kui tema ruumala muutub.

Ülesanded

Gaasi ruumala vähenes normaalrõhul (101 kPa) ühe liitri võrra. Arvutage gaasi töö.
Arvutage gaasi töö joonisel 1.28. b protsessis AB.
Millistel tingimustel teeb gaas tööd?
Missuguse isoprotsessi korral tööd ei tehta?
Lisamaterjalid

5.2 Termodünaamika seadused

18. sajandi teisest poolel alanud tööstuslik pööre soodustas uute jõumasinate konstrueerimist ja nende tehniliste näitajate parandamist. Vesi- ja tuuleveskitele lisandusid aurumasinad, mille kasutegur oli esialgu väike, ühe protsendi lähedal. 19. sajandi esimesel poolel uurisid paljud teadlased tule nn liikumapanevat jõudu. Uurimuste käigus tekkis ja täpsustus füüsikaline suurus energia, mis osutus looduslike protsesside kirjeldamisel väga üldiseks. Selgusid mehaaniliste ja soojuslike protsesside seosed ja erinevused. Uuriti, kuidas saab muuta mehaanilist ja elektrienergiat soojuseks ning vastupidi. Sajandi keskel jõuti üldistatud arusaamani energia jäävusest ja muundumisest – sõnastati termodünaamika 1. seadus.

Keha siseenergia muut on võrdne kehale antud soojushulga ja väliste jõudude poolt tehtud töö summaga

(1.24.)

1.29 Gaasi kokkusurumine ja kuumutamine

Kõik seaduse valemis esinevad suurused võivad olla nii positiivsed kui ka negatiivsed. Joonisel 1.29. on kujutatud olukord, kus silindris olevale gaasile antakse soojushulk ja samal ajal suruvad välised jõud gaasi kokku.

Tavaliselt loetakse saadud soojushulka positiivseks ja äraantud soojushulka negatiivseks. Töö on negatiivne siis, kui keha ise teeb tööd oma siseenergia kahanemise arvel. Joonisel on nii soojushulk kui ka väliste jõudude töö positiivsed.

Protsessi, mille korral ei toimu soojusvahetust väliskeskkonnaga, nimetatakse adiabaatiliseks protsessiks. Selles protsessis Q = 0 ja keha siseenergia muutub üksnes mehaanilise töö tõttu. Isohoorilise protsessi korral ei tehta tööd, A = 0, ja keha siseenergia muut on võrdne saadud või ära antud soojushulgaga. Mehaanikast on teada, et hõõrde- ja takistusjõudude esinemisel keha mehaaniline koguenergia väheneb, muutudes teiseks energialiigiks – siseenergiaks M. Augustikuise meteoorivoolu juures on näha, kuidas suure kiiruse, takistusjõu ja temperatuuritõusu tõttu meteoor Maa atmosfääris süttib ja aurustub.

Paljude katsete põhjal on sõnastatud ka üldine energia jäävuse seadus. Suletud süsteemi koguenergia on jääv. Energia liik pole oluline, oluline on vaid see, et ei toimu energiavoolu süsteemist välja või sisse FLA M. Samuti võib toimuda süsteemi sees ühe energialiigi muutumine teiseks.

Temperatuuri peatükis 4.1 on kirjas, et soojus läheb iseenesest soojemalt kehalt külmemale, kuni soojusliku tasakaalu saabumiseni. Äsja sõnastatud termodünaamika esimene seadus ei keela ka vastupidise protsessi toimumist, aga millegipärast vette visatud sulatina iseenesest uuesti soojaks ei lähe. Iseeneslikud (spontaansed) soojuslikud protsessid toimuvad soojusliku tasakaalu suunas. Termodünaamika 2. seadus väidab, et soojus ei saa minna iseeneslikult külmemalt kehalt soojemale. Külmkapis ja soojapumbas toimub küll soojuse ülekanne külmemalt kehalt soojemale, kuid see ei toimu spontaanselt, vaid välisjõudude töö tulemusel.

Kokkuvõte

Keha siseenergia muut

Keha siseenergia muut on võrdne kehale antud soojushulga ja väliste jõudude poolt tehtud töö summaga.

Adiabaatiline protsess

Adiabaatilises protsessis ei toimu keha või kehade süsteemi soojusvahetust väliskeskkonnaga.

Külmemalt soojemale

Soojus ei saa iseeneslikult üle minna külmemalt kehalt soojemale.

Iseeneslikud protsessid

Iseeneslikud (spontaansed) protsessid viivad keha soojusliku tasakaalu olekusse.

Suletud süsteemi energia

Suletud süsteemi koguenergia on jääv.

Ülesanded

Gaas annab ära soojushulga 5 kJ ja välised jõud teevad gaasi kokkusurumisel tööd 12 kJ. Arvutage siseenergia muut.
Gaasile antakse soojushulk 130 kJ ja gaas paisub samal ajal jääval rõhul 1,0·105 Pa 2 liitri võrra. Arvutage gaasi paisumistöö ja siseenergia muut. Kas gaasi temperatuur tõusis või langes?
Kas valemis 1.24.  (ΔU = Q + A) võivad olla Q, A ja ΔU negatiivsed?
Kas on võimalik, et gaas sai soojushulga, aga tema temperatuur alanes?
Lisamaterjalid

5.3 Entroopia

Olgu meil anum ruumalaga V. Jaotame selle mõttes n võrdseks osaks. Kui anumas on üks molekul, siis on selles ruumalaosas

molekuli leidmise tõenäosus

Kui anumas on 2 molekuli, siis on nende üheaegse leidmise tõenäosus samas osas

Kui anumas on N molekuli, on nende kõigi leidmise tõenäosus samas

Oletame, et esimeses olekus (joonis 1.30. a) on kõik gaasi molekulid koondunud anuma vasakusse ossa, mille ruumala on VI, ja teises olekus on kõik molekulid anuma osas VII (joonis 1.30. b). Leiame nende olekute tõenäosuste suhte:

1.30a Molekulid anuma osas V1
1.30b Molekulid anuma osas V2

Kui anumas on 10 molekuli ja ruumalad VII ja VI suhtuvad nagu 12 : 13 = 32, on tõenäosuste suhe (32)10 ≈ 58, st teise oleku tõenäosus on esimese omast ca 58 korda suurem. Kui molekule oleks 100, siis teise oleku tõenäosus oleks esimese omast ca 4·1017 korda suurem ja 500 molekuli korral oleks teine olek ligikaudu 1,1·1088 korda tõenäosem. Siit võib järeldada, et suure arvu molekulide puhul on kõige suurema tõenäosusega olek selline, kus osakesed on jaotunud ühtlaselt kogu anuma ulatuses. Sellele vastab soojusliku tasakaalu olek. Iseeneslikud protsessid viivad süsteemi suurima tõenäosusega olekusse.

Ideaalne gaas saab temperatuuril T soojushulga ΔQ. Saadud soojushulga ja absoluutse temperatuuri suhet nimetatakse entroopia muuduks:

(1.25.)

Entroopia ja tema muudu ühikuks SI-s on J/K. Sama ühik on ka Boltzmanni konstandil. Saab näidata, et entroopia muutu võib arvutada ka tõenäosuste suhte põhjal valemist

(1.26.)

kus k on Boltzmanni konstant ja ln w naturaallogaritm tõenäosuste suhtest.

Soojuslikke protsesse jaotatakse pööratavateks ja pöördumatuteks. Pööratav protess koosneb üksteisele järgnevatest tasakaaluolekutest ja entroopia muut nendes on 0. Protsessidele, milles entroopia kasvab, vastavad pöördumatud muutused süsteemis, mis vähendavad süsteemi võimet teha tööd, sest osa energiast on pöördumatult muundunud soojuseks. Suletud süsteemis ei saa entroopia kahaneda.

(1.27.)

Viimane lause ja võrratus on oma sisult termodünaamika 2. seadus, mis väljendab teiste sõnadega asjaolu, et soojus saab iseenesest (spontaanselt) levida ainult kõrgema temperatuuriga kehalt madalama temperatuuriga kehale.

Kokkuvõte

Kehade süsteemi entroopia

Kehade süsteemi entroopia muut on võrdne süsteemi poolt saadud soojushulga ja absoluutse temperatuuri suhtega:

Iseeneslikud protsessid

Iseeneslikud protsessid viivad süsteemi kõige suurema tõenäosusega soojuslikku tasakaalu.

Entroopia suletud süsteemis

Suletud süsteemis, kus ei toimu aine ega energiavahetust väliskeskkonnaga, ei saa entroopia kahaneda.

Ülesanded

Gaas sai temperatuuril 27 °C soojushulga 15 000 J. Arvutage entroopia muut.
Kumb olekutest joonisel 1.30. oleks tõenäosem ja mitu korda, kui anumas oleks 20 kaootiliselt liikuvat molekuli? VI = 1/3 V ja VII = 1/2 V.
Tooge näide protsessi kohta, milles entroopia kahaneb.
Suletud süsteemis on soojusliku tasakaalu olek. Kui kaua see kestab?
Lisamaterjalid

5.4 Soojusmasin

Soojusmasin muundab soojushulga mehaaniliseks tööks. Ajalooliselt oli esimeseks soojusmasinaks aurumasin, mida kasutati alates 17. sajandi lõpust kaevandusest vee väljapumpamiseks ja õhutamiseks. 19. sajandi algul oli aurumasin piisavalt väike, et kasutada teda jõumasinana transpordis, auruvedurites ja aurulaevades. Hiljem leiutati sisepõlemismootorid, auruturbiinid, reaktiivmootorid jne. Soojusmasinal on alati 3 põhilist osa: soojendi, töötav keha ja jahuti (joonis 1.31. a).

1.31a Soojusmasina põhimõtteskeem

Töötavale kehale, milleks on tavaliselt gaas, antakse soojendist soojushulk Q1. Gaas teeb paisudes mehaanilist tööd A. Pideva töö tegemiseks peab töötava keha olek taastuma teatava aja – tsükli – jooksul, milleks tuleb soojendist saadud soojushulgast anda osa Q2 jahutile. Jahutiks on üldjuhul ümbritsev keskkond. Tsükli lõpus on gaas jälle algolekus ja siseenergia muut 0. Termodünaamika esimese seaduse kohaselt on mehaaniline töö gaasi paisumisel A = Q1Q2. Soojusmasina kasutegur η on mehaanilise töö ja soojendist saadud energia suhe, mida väljendatakse tihti protsentides.

(1.28.)

Prantsuse teadlane Carnot näitas 19. sajandi alguses, et nn ideaalse soojusmasina kasutegur on

(1.29.)

kus T1 ja T2 on vastavalt soojendi ja jahuti absoluutsed temperatuurid.

Valem 1.29. näitab, et ülekantavast soojushulgast saab seda rohkem mehaanilist tööd, mida suurem on temperatuuride vahe soojusülekandel.

1.31b Carnot´ tsükkel

Ideaalse soojusmasina tsükkel koosneb kahest isotermilisest ja kahest adiabaatilisest protses­sist (joonis 1.31. b).Ideaalse soojusmasina kasutegur on suurim antud temperatuurivahemikus töötavate masinate hulgas.

Gaas teeb paisudes tööd, mis on arvuliselt võrdne kujundi ABCC’A’ pindalaga. Osa sellest tööst tuleb aga kulutada gaasi kokkusurumiseks protsessis CDA. Selleks vajalik töö on arvuliselt võrdne sinisega viirutatud kujundi CDAA’C’ pindalaga. Kasuliku töö hulk on võrdne punasega viirutatud osa ABCD pindalaga.

Soojusmasinate tegelik kasutegur ei ole suur, sest soojendi temperatuur on piiratud materjali sulamistemperatuuriga ja jahuti temperatuur ümbritseva keskkonna omaga.

Soojusmasinateks loetakse ka vastassuunalise tsükliga töötavaid masinaid (külmuti, soojuspump), mis tööd tehes liigutavad soojust külmemalt kehalt soojemale. Mõiste kasutegur omandab nende juures teise tähenduse.

Kasutades soojusmasina mõistet, võime anda termodünaamika 2. seadusele uue sõnastuse. Ei ole võimalik ehitada soojusmasinat, mis muudab soojuse täielikult tööks.

Kokkuvõte

Soojusmasin

Soojusmasin muudab soojusenergia mehaaniliseks tööks.

Soojusmasina kasutegur

Soojusmasina kasutegur on saadud mehaanilise töö ja kulutatud soojusenergia suhe (tavaliselt protsentides):

Ideaalse masina kasutegur

Ideaalse soojusmasina kasutegur on määratud soojendi ja jahuti absoluutsete temperatuuridega:

Ülesanded

Töötav keha saab soojendilt soojushulga 9 MJ ja ja annab jahutile soojushulga 6 MJ. Arvutage kasulik töö ja soojusmasina kasutegur.
Kui suur maksimaalne kasutegur võib olla soojusmasinal, mille soojendi temperatuur on 1000 °C ja jahutil 80 °C?
Miks ei saa soojusmasina kasutegur olla üle 100%?
Missugused asjaolud piiravad soojusmasina kasuteguri tõstmist?
Lisamaterjalid

5.5 Sisepõlemismootor

Enamikul sõiduautodel ning väiksematel veoautodel on 4-taktiline bensiinimootor. Selle mootori põhimõtted töötati välja juba poolteist sajandit tagasi ning need on suuresti samad ka tänapäeval. Bensiinimootori töö (joonis 1.32.) põhineb silindris elektrisädemega süüdatud küttesegu (bensiini ja õhu segu) paisumisel. Paisuv gaas paneb kolvi silindris liikuma ja see muudetakse kepsu abil väntvõlli pöörlevaks liikumiseks. Mootori jõuülekanne paneb rattad pöörlema ja auto kulgevalt liikuma.

1.32 Sisepõlemismootori ehitus
1.33 4-taktiline sisepõlemismootor

Gaasiline küttesegu, mis silindri sees põleb ja paisub, valmistatakse eelnevalt ette (näiteks karburaatoris). Joonisel 1.33. on toodud silindris oleva gaasi rõhu sõltuvus ruumalast ja mootori kolvi asendid nelja erineva takti jooksul.

  1. Sisselasketakt AB: sisselaskeklapp avatakse, kolb liigub paremale ning bensiini ja õhu segu imetakse silindrisse.
  2. Survetakt BC: klapid on suletud, kolb liigub vasakule ning kütusesegu surutakse kokku ja pannakse plahvatama elektrisädeme toimel.
  3. Töötakt CD: kolb surutakse paisuva gaasi poolt paremale ja kolviga ühendatud keps sunnib väntvõlli pöörlema.
  4. Väljalasketakt DA: väljalaskeklapp avaneb, kolb liigub vasakule ja põlemisjäägid surutakse silindrist välja.

Üks tsükkel on sellega läbi ja edasi protsess kordub. Mehaanilist tööd teeb mootor ainult töötakti jooksul ja osa sellest kulub esimese, teise ja neljanda takti sooritamiseks. Töötakti ajal tehtud ja ülejäänud taktide sooritamiseks kulutatud töö vahe ongi mootori kasulik töö. pV-graafikult näeme, et kasulik töö on arvuliselt võrdne tsükli kinnise viirutatud osa pindalaga. Mootori kasutegur oleks suur, kui gaasi paisumine toimuks kõrgel, aga kokkusurumine madalal temperatuuril. Seda tüüpi mootorite kasutegur on umbes 30%. Auto puhul läheb kasulikuks tööks (hõõrdejõudude ületamiseks) ainult 15%.

Kokkuvõte

Sisepõlemismootor

Sisepõlemismootor on soojusmasin, kus gaasilise või vedela kütuse põlemine toimub põlemiskambris (silindris).

Sisepõlemismootori töötsükkel

Sisepõlemismootori tsükkel koosneb neljast või kahest taktist.

Ülesanded

Mitu pööret teeb neljataktilise mootori võll ühe tsükli jooksul?
Mitu tsüklit teeb 4-taktilise mootori väntvõll ühes sekundis pöörlemiskiirusel 3000 p/min?
Mille poolest erineb sisepõlemismootor elektrimootorist?
Missuguseid kütuseid võiks kasutada sisepõlemismootoris?
Lisamaterjalid

5.6 Auruturbiin ja külmik

1.34 Turbiini skeem

Põhiline osa maailma elektrienergiast toodetakse soojus- ja tuumaelektrijaamades. Nendes toodab elektrit auruturbiin, mille paneb enamasti käima vee soojendamisest saadud kõrge rõhuga aur. Vett soojendatakse fossiilsete kütuste põletamisega või tuumareaktsioonides eraldunud soojusega. Kiire veeauru juga suunatakse turbiini labadele (joonis 1.34.) ja turbiin hakkab pöörlema. Auruturbiin muudab kuuma auru potentsiaalse energia paisumise töö kaudu pöörleva turbiini kineetiliseks energiaks.

1.35 Koostootmisjaamast tarbijani

Turbiinis paisunud ja jahtunud auru võidakse kasutada mitmeti. Üks võimalustest on aur veekogust pumbatava veega kondenseerida ja juhtida uuesti aurukatlasse. Kondensaatori (jahuti) temperatuur peab parema kasuteguri saavutamiseks olema võimalikult madal. Seetõttu on vaja 1 kg auru kondenseerimiseks kuni 100 kg jahutusvett (umbes 150 liitrit 1 kWh elektrienergia kohta). Väljast võetava jahutusvee temperatuur tõuseb kondensaatoris ainult paarikümne kraadi võrra. Selle madalatemperatuurilise, st madalakvaliteedilise energiaga ei ole tavaliselt midagi peale hakata. Kondenseerimisega läheb kaduma umbes 55% energiast ja kasutegur on ligikaudu 40%. Teine võimalus on kasutada täielikult või osaliselt läbitöötatud auru hoonete kütmiseks, sooja vee saamiseks ja tehaste tehnoloogilistes protsessides. Nn koostootmisjaamad (joonis 1.35.) annavad nii elektri- kui ka soojusenergiat ja nende kasutegur ulatub 60%-ni. Luunja ja Väo koostootmisjaamade elektriline võimsus on umbes 25 MW ja soojuslik võimsus 50 MW.

Tuumaelektrijaam erineb soojuselektrijaamast selle poolest, et kuum aur saadakse tuumareaktoris toimuvate tuumareaktsioonide arvelt FLA MMF. Tuumajaamas rakendatakse oluliselt karmimaid ohutustehnika meetmeid.

Külmik on soojusmasin, mis võtab mingilt kehalt soojushulga ja annab selle teisele, kõrgema temperatuuriga kehale. Termodünaamika 2. seaduse kohaselt ei toimu selline protsess iseeneslikult, vaid väliste jõudude töö arvelt. Külmiku tsükkel kulgeb seega vastupidiselt sisepõlemismootori ja turbiini omaga.

1.36 Külmiku tööpõhimõte

Kompressor surub gaasi vedelikuks kokku (joonis 1.36.). Vedelik pressitakse läbi väikese ava – düüsi.. Vedelik aurustub, tekkinud gaas paisub ja võtab jahutatavalt kehalt külmakambris soojushulga Q2. Edasi surutakse gaas uuesti kompressoriga kokku, et selle temperatuur ületaks ümbritseva keskkonna temperatuuri. Soojenemine toimub väljaspool kambrit asuvas radiaatoris, kust soojushulk Q1 läheb toaõhku.

Kokkuvõte

Auruturbiin

Auruturbiin on soojusmasin, mis muudab kuuma kokkusurutud auru potentsiaalse energia turbiini rootori pöörlemise energiaks.

Elektrienergia päritolu

Põhiline osa elektrienergiast saadakse jaamadest, kus fossiilse kütuse põlemisel või tuumareaktsioonidel vabanenud soojusenergia muundatakse auruturbiini ja vahelduvvoolugeneraatori vahendusel elektrienergiaks.

Külmik

Külmik on soojusmasin, mis tehtud töö tulemusel viib soojushulga külmemalt kehalt soojemale.

Ülesanded

Mitu kWh elektrienergiat toodaks a) aastas ja b) kuus Väo koostootmisjaam, kui ta töötaks pidevalt installeeritud elektrilisel võimsusel 25 MW?
Mootorite ja turbiinide päripidi kulgeva ringprotsessiga soojusmasinaid iseloomustatakse kasuteguriga. Mille sarnasega võiks iseloomustada külmutit?
Miks on Narva veehoidla veetemperatuur kõrgem kui teistes lähedal asuvates veekogudes?
Missugustes elektrijaamades töötab auruturbiin, kuid ei kasutata fossiilset- või tuumakütust?
Külmkapis võetakse toiduainetelt ära soojushulk Q2 ja antakse radiaatori kaudu toaõhule soojushulk Q1. Kumb on suurem ja miks?
Lisamaterjalid