Me jõudsime äsja järeldusele, et laetud keha liikumisel elektriväljas tehtav töö võib olla üks ja seesama liikumisel mööda täiesti erinevaid teid. Järelikult pole olulised ka E-vektori pikkuse ja suuna muutused liikumise käigus. Näiteks ei sõltu elektrilambi põlemine üldse lambi hõõgniidi kujust ja E-vektori suuna muutumisest piki hõõgniiti. Oluline on vaid energia, mis vabaneb laengukandjate läbiminekul hõõgniidist. Seetõttu on elektrivälja iseloomustamiseks võetud kasutusele veel üks suurus - välja potentsiaal.
Väljatugevus E näitab teatavasti ühikulise positiivse laenguga kehale vaadeldavas punktis mõjuvat jõudu. Potentsiaal aga näitab, kui suur on selles punktis ühikulise positiivse laenguga keha potentsiaalne energia. Elektrivälja mingi punkti potentsiaali leidmiseks tuleb jagada sellesse punkti paigutatud laengu potentsiaalne energia laengu suurusega
Seejuures tähistab sõna laeng mõistagi laetud keha või laetud osakeste kogumit.
Potentsiaal on skalaarne ehk suunata suurus, nii nagu rõhk või temperatuur.
Paigutades potentsiaali definitsioonivalemisse (1.21) energia avaldise (valem 1.19), saame homogeense välja potentsiaali (J.1.38) avaldada kujul
Kehade tegelik liikumine ei sõltu kuigivõrd potentsiaali nulltaseme asukohast. Seetõttu võib potentsiaali nulltaseme valida lähtuvalt konkreetse ülesande tingimustest. Reeglina valitakse selleks punkt, millest laetud keha elektrivälja mõjul enam edasi liikuda ei saa. Elektrotehnikas loetakse tavaliselt nulliks Maa potentsiaal või siis elektriseadme maandatud metallkorpuse potentsiaal.