Optika ehk valgusõpetus kirjeldab valguse tekkimist, levimist ja kadumist. Optikas nimetatakse valguse tekkimist kiirgumiseks ja valguse kadumist neeldumiseks. Kiirgumine seisneb selles, et aineline objekt tekitab oma energia arvel täiendava väljaportsjoni ehk kvandi. Neeldumisel annab kvant oma energia ja impulsi mingile ainelisele objektile ära ning haihtub ise olematusse. Ehk siis selleks, et valgus tekiks, peab olema keha, mis sel moel muudab teisi energialiike valguseks. Sellist keha nimetatakse valgusallikaks.
Näiteks nii hõõglambis kui valgusdioodlambis muudetakse valgusenergiaks elektrienergiat. Seejuures kiiratakse hõõglambis suurem osa (üle 80 %) muundunud elektrienergiast infravalgusena (soojuskiirgusena), aga valgusdioodlambis nähtava valgusena. Valgusdioodlampi tuntakse ka LED-lambina (ingl.k. light emitting diode).
Valguse levimine toimub erinevalt vaakumis või mingis keskkonnas ehk aines.
Vaakumis levib valgus nagu iga elektromagnetlaine: muutuv elektriväli tekitab muutuva magnetvälja ja see omakorda uuesti muutuva elektrivälja ning kõik kordub. Nii kandub valgus ruumis edasi kiirusega c.
Valgus levib ühtlases ehk homogeenses keskkonnas sirgjooneliselt. Mitteühtlases keskkonnas levib valgus kõverat teed pidi.
Valguse levimise teed saab leida looduses kehtiva printsiibi järgi, mis väidab, et valgus levib teed mööda, mille läbimiseks kulunud aeg on minimaalne. Seda printsiipi tuntakse Fermat' printsiibina, sest selle sõnastas 1662. aastal prantsuse matemaatik Pierre de Fermat. Kui keskkond on ühtlane, siis kõige kiiremaks levimisteeks on sirge, aga kui keskkond ei ole ühtlane, siis pole kiireim tee sugugi sirge. Seda väidet saab illustreerida järgmise näitega.
Oletame, et me oleme järve kaldal ja äkki hakkab järves keegi uppuma (J.3.2). Uppujale tuleks appi jõuda nii kiiresti kui võimalik. Kas joosta punkti 1 ja ujuda otsejoones uppujani või on mõni teine variant otstarbekam?
Tuleb arvestada, et inimene jookseb kiiremini kui ujub ja sellepärast tuleks ujumismaad lühendada ja jooksmismaad pikendada. Sellepärast tulekski joosta punkti 2 ja sealt uppujani ujuda. Punkti 2 täpse asukoha saab välja arvutada, aga uppuja päästmisel pole selleks aega ning valik tuleb teha oma sisetunde järgi.
Kui valgus langeb mingile kehale, siis võib valgus kas kehalt peegelduda, kehast läbi minna või kehas neelduda. Ükski nendest protsessidest ei toimu täielikult. Ka kõige parem peegel ei peegelda valgusest 100 %, mingi osa valgusest siiski neeldub peeglis. Samuti ei lase ka kõige puhtam aknaklaas läbi kogu valgust, ikka neeldub mingi osa valgusest klaasis.
Kui valgus langeb ainele, mis valgust läbi ei lase ja ei peegelda ka, siis öeldakse, et valgus neeldus selles aines. Lihtsamalt öeldes: valgus kadus ära. Aga me teame, et kehtib energia jäävuse seadus, järelikult pidi neeldumisel valgusenergia muutuma mõneks teiseks energialiigiks. Tavaliselt muutub neeldunud valgusenergia soojuseks, kuid see võib muutuda ka näiteks elektrienergiaks, nagu see juhtub päikesepatareides.
Valgus ei neeldu aines kunagi täielikult, sest ka kõige mustem pind peegeldab natuke valgust tagasi. See hulk võib olla küll tühine, aga nulliks ei saa see kunagi. Näiteks tahma korral peegeldub sellele langenud valgusest tagasi vähem kui 0,1 %.