Elektromagnetlainete difraktsioon ja interferents

Elektromagnetlainete difraktsioon ja interferents on põhimõtteliselt sarnased mehaaniliste lainete difraktsiooni ja interferentsiga. Mehaaniliste lainete difraktsiooni ja interferentsi käsitlesime Mehaanika kursuses. Tuletame kõigepealt lühidalt seal õpitu meelde.

J.3.9 Veelainete difraktsioon ava läbimisel. Varju piirkonda (hall) kanduvad lained kõige rohkem kitsaima ava korral.

Difraktsiooniks nimetatakse lainete kandumist teele jäävate tõkete taha. Näiteks veelained jõuavad vees oleva kivi taha ja kanduvad avade läbimisel varju piirkonda (vt J.3.9).

Interferentsiks nimetatakse lainete liitumist, mille tulemusena mõnes kohas lained muutuvad suuremaks (amplituud saab suuremaks kui ühe liituva laine amplituud), teises kohas väiksemaks (amplituud väheneb). Näiteks kui visata tiiki samaaegselt kaks kivi, siis kohtudes muutuvad tekkivad lained mõnes kohas suuremaks, teises kohas väiksemaks (vt J.3.10).

Veelainete abil saame endale ette kujutada ka elektromagnetiliste tasalainete ja keralainete difraktsiooni ja interferentsi – joonisel 3.9 kujutatud situatsioon on ühtlasi ristlõige tasalainete difraktsioonist pilult (pilu on suunatud risti joonisega) ning (joonisel 3.10) on ristlõige kahe keralaine interferentsist. Seda analoogiat saab kasutada elektromagnetlainete difraktsiooni ja interferentsi uurimiseks lainevannis.

Katses nähtud veelainete amplituudi suurenemist või vähenemist mõnes kohas aitab mõista (joonis 3.11). Seal on kujutatud kaks liituvat lainet mingis veepinna punktis. Liitlaine saamiseks tuleb liita lainete hälbed igal ajahetkel. Joonisel on toodud kolm juhtu. Joonise osas a on lained täpselt samas faasis, st lainete miinimumid ja maksimumid esinevad täpselt ühel hetkel mõlemas laines. Sellises olukorras tugevdavad lained teineteist maksimaalselt, liitlaine amplituud on võrdne liituvate lainete amplituudide summaga. Joonise osas b on lained täpselt vastandfaasis, st ühe laine maksimum esineb täpselt samal ajal, kui teisel lainel on miinimum. Sellises olukorras nõrgendavad lained teineteist maksimaalselt, liitlaine amplituud on võrdne liituvate lainete amplituudide vahega.

Loomulikult esineb rohkem selliseid kohti veepinnal, kus lained pole täpselt samas või vastandfaasis. Neis on liitlaine amplituud maksimaalse ja minimaalse vahepealne nagu on see joonise osas c.

Selleks et tekiks interferents, peavad liituvad lained olema koherentsed see tähendab, et lainetel peab olema ühesugune lainepikkus ja nende faaside vahe ei tohi aja jooksul muutuda.

J.3.11 Lainete liitumise tulemusi: a) liituvad lained samas faasis, b) liituvad lained on vastandfaasis, c) liituvad lained on suvalise faasinihkega.

Kui me ütleme, et difraktsioon ja interferents esinevad ka elektromagnetlainete korral, siis tekivad kohe küsimused, millele polegi nii lihtne vastata.

Kui esineb valguse difraktsioon, siis valgus levib ka tõkete taha. Kas siis peaks olema võimalik näha "nurga taha"?

Kui esineb valguse interferents, siis peaks kahe valgusallika korral kuskil valguslained üksteist tugevdama ja kuskil nõrgendama. Kas kahe lambi põlemisel tekivad tühja toa põrandal heledamad ja tumedamad piirkonnad?

Mõlemale küsimusele peaksime vastama eitavalt, sest midagi sellist tavaelus ei juhtu. Aga miks?

Sellepärast, et me pole arvestanud kaht asjaolu, mida tuleb lainete difraktsiooni ja interferentsi uurimisel arvestada.

Esiteks, lained difrageeruvad (kalduvad sirgjoonelisest levimissuunast kõrvale) märgatavalt ainult siis, kui nende teele jäävad tõkete või avade mõõtmed on võrreldavad nende lainepikkusega.

Valguse lainepikkus on väga väike ja tavaelus nii väikesi objekte pole või me ei märka neid. Küll aga saab valguse difraktsiooni vaadelda selleks korraldatud katsetes.

J.3.12. Laserkiire difraktsioon pilult. Pildi ülemises osas on näha eksperimendi põhimõtteskeem, alumisel osal on ekraanile tekkiv pilt. Klikkimisel proovib avaneda Java simulatsioon, mis paljudel juhtudel on arvutites keelatud, reeglina ka mobiilseadmetes.

Lepime kokku, et edaspidi räägime ainult avadest, kuigi kogu jutt kehtib ka tõkete korral.

Ava väiksuse nõude põhjendamine pole lihtne ja sellele annab vastuse ülikooli optikakursus. Meie piirdume ainult eksperimentaalse fakti konstateerimisega.

Ühe pilu difraktsiooni katses näeme, et pilust läheb osa laserivalgust otse läbi ja see tekitab difraktsioonipildi keskele nn tsentraalse täpi, mis on kõige heledam (J.3.12). Sellest kahele poole jäävad valgustäppide read, kus tsentraalsest täpist kaugenedes täppide heledus järjest väheneb. Need täpid on laserikiire kujutised ekraanil ja see tähendab, et osa valgust ei lähe läbi pilu otse edasi, vaid kaldub erinevatesse suundadesse pärast pilu läbimist.

Kui vähendada pilu laiust, siis vahekaugused täppide vahel suurenevad. Kui pilu laiust suurendada, siis täpid tõmbuvad kokku tsentraalse täpi ümber. Pilu suure laiuse (paarist millimeetrist suurem) korral ei ole difraktsioon jälgitav.

Teiseks esineb interferents ainult siis, kui valguslained on koherentsed. Tavalised laelambid aga ei kiirga koherentseid laineid, st neil pole ühesugune lainepikkus ja muutumatu faaside vahe. Selles, et lampidel pole ühesuguse lainepikkusega valgus, saame veenduda palja silmaga. Kui valgusallikas kiirgab mingi kindla lainepikkusega valgust, siis on see valgus ühevärviline. Kui valgus on "valge", siis on tegemist liitvalgusega, mis koosneb mitmete värvuste segust.

Lainete faaside kindlakstegemine pole silma järgi võimalik, see nõuab juba täpsemat uurimist.

Koherentseid valguslaineid kiirgab laser. Sellepärast kasutataksegi interferentsi ja difraktsioonikatsetes peamiselt laserivalgust.

J.3.13 Valguse läbiminek kitsast pilust - seletus Huygensi printsiibi abil.

Valguse difraktsiooni saab seletada Huygensi printsiibi alusel. Joonisel 3.13. on näidatud tasalainete läbiminek kitsast pilust. Varju piirkonda ("nurga taha", mis on joonisel hall) satub valgus pilu servades olevaist sekundaarlaine allikaist M ja N. Tegelikkuses on neid sekundaarallikaid muidugi palju rohkem, kust valgus varju piirkonda satub, aga neid kõiki pole joonisel kujutatud.

Nii saab seletada valguse levimist "nurga taha", aga siis peaks valgus täitma varju piirkonna ühtlaselt. Meie aga nägime valgustäppide rida, kus täppide vahel olid tumedad kohad. Sinna ilmselt valgus ei sattunud.

Püüame olukorda seletada joonisel 3.14.

J.3.14 Valgustäppide tekkimine ühe pilu difraktsioonikatses.

Lainefrondi punktidest A ja B lähtuvad sekundaarlained. Need kohtuvad omavahel ja juhul kui lained on samas faasis nagu on punktis C, siis nad tugevdavad teineteist ning tekib valgustäpp. Kui aga kohtuvad lained on vastandfaasides, siis nad kustutavad teineteise ja tekib tume koht. See, milline on liituvate lainete faaside vahe, oleneb teepikkuste erinevusest, mis laineil tuleb liitumispunkti jõudmiseks läbida, antud juhul AC – BC või AD – BD. Seda teepikkuste erinevust nimetatakse käiguvaheks. Järelikult tekivad valgustäpid seal, kus kohtuvad sekundaarlained on samas faasis ja tumedad kohad seal, kus need lained on vastandfaasides. Sarnane olukord tekib ka pilu teises servas, sellepärast ongi täppide rida mõlemal pool tsentraalset täppi.

Kokkuvõtvalt võib öelda, et valguse difraktsioon ja interferents on otsesed tõendid selle kohta, et valgus on laine. Selle tõestamine, et valgus on just elektromagnetiline laine, on juba palju keerulisem.

Interferentsi maksimumide ja miinimumide tekkimise tingimused on toodud allpool.

Valguse interferentsimaksimumid tekivad kohtades, kus käiguvahe jaoks on täidetud tingimus

(J.3.15). Kohtades, kus valgust ei ole, on interferentsimiinimumid. Seal on täidetud tingimus

(J.3.16). Tuleb välja, et difraktsioon saab nähtavaks tänu sellele, et pärast pilu läbimist valguslained liituvad ja tugevdavad või kustutavad üksteist. Mitmest avast tulevad valguslained saavad liituda ainult sellepärast, et pärast ava läbimist kanduvad lained varju piirkonda. Kõik see näitab, et ei saa rääkida difraktsioonist ilma interferentsita ja vastupidi. Nimetusi difraktsioon ja interferents kasutatakse suuresti ajaloolistel põhjustel, mis sai alguse ajast, kui neid nähtusi ei osatud omavahel siduda.

J.3.17 Valguslainete E-vektorite liitumine interferentsi maksimumi a) ja miinimumi b) korral.

Kui uurida valguslainete liitumist lähemalt, siis selgub, et lainete kohtumispunktis liituvad lainete E-vektorid, olenemata sellest, kui palju laineid on. Sellist nähtust nimetatakse elektriväljade superpositsiooniks ja seda kirjeldab kursusest Füüsikalise looduskäsitluse alused tuntud superpositsiooniprintsiip: summaarne elektrivälja tugevus antud punktis on võrdne kõikide E-vektorite summaga selles punktis. Superpositsiooniprintsiibi kehtivus on eksperimentaalne fakt, mis iseloomustab looduse omapära, ja seda ei ole võimalik põhjendada.

Joonisel 3.17 on toodud näiteid E-vektorite liitumisest valguslainete kohtumisel.

Esimesel juhul on liituvad lained samas faasis ja tulemuseks on valguse intensiivsuse suurenemine: ehk . Kui , siis ja .

Teisel juhul on liituvad lained vastandfaasides ja tulemuseks on valguse intensiivsuse vähenemine: ehk . Kui , siis ja .