Nagu juba sissejuhatusest näha, leidub ka teisi põnevaid jadasid, mille omaduste kallal on matemaatikud palju pead murdnud. Toome neist mõned matemaatikutele meelepärased näited.
Algarvude jada
Meenutame, et algarvudeks kutsutakse arve, mis jaguvad ainult iseenda ja ühega. Esimeses osas näitasime, et algarvusid on lõpmatult palju [lk 46]. Algarvude jada algab nii:
Algarvudega on endiselt seotud palju veel lahendamata küsimusi. Näiteks ei ole teada, kas leidub lõpmatult palju kaksikalgarve – algarvude paare, mis erinevad teineteisest kahe võrra. Sellisteks paarideks oleks näiteks (3; 5) või (197; 199). Suurimal leitud paaril on tänaseks kümnendesituses 200700 numbrit!
Huvitav hiljuti tõestamist leidnud teoreem väidab, et algarvude jadade sees võib leida soovitud pikkusega aritmeetilisi jadasid. Teisisõnu, on võimalik leida nii 10, 1000 kui 20 350 liikmega aritmeetiline jada, mille kõik liikmed on algarvud. Proovige kasvõi leida 4 liikmega aritmeetiline jada, mille liikmed on algarvud!
Algarvude pöördarvude jada
Huvitavaks osutub ka algarvude pöördarvude jada
Selle jada muudab huvitavaks tema liikmete summa ääretult aeglane, kuid visa suurenemine. Ükskõik mis arvu jaoks võime alati leida teise arvu n, nii et algarvude pöördarvude jada n esimese jada liikme summa oleks mõeldud arvust suurem.
Samas aga suureneb see jada nii aeglaselt, et näiteks kui soovime, et esimese n liikme summa oleks kokku 7, peab selleks summeerima ligikaudu 1010 000 000 jada liiget!
See jada on ka ilus näide sellest, kuidas arvutitega tehtavad katsed võiksid meid eksiteele viia. Algarvude pöördarvude jada kasvab nii aeglaselt ning iga arvutiga tehtud eksperiment veenaks meid, et jada summa ei saa kuidagi olla lõpmatult suur.
Ometigi on matemaatiliselt võimalik näidata, et jada summa on lõpmatult suur.
Naturaalarvude pöördarvude ruutude jada
Selle jada kõikide liikmete kokkuliitmine annab jälle ühe üsnagi üllatava seose:
Kas oskate leida mõne põhjuse, miks naturaalarvude pöördarvude ruutude summa peaks olema seotud ringi pindalast tuntud arvuga π?
Selle huvitava seose leidis üks läbi aegade suurimaid matemaatikuid Leonhard Euler 1735. aastal.
Huvitaval kombel ei rahuldanud tema tõestus teisi tolleaegseid matemaatikuid ning läks veel kuus aastat pärast avastust, enne kui ta suutis ka teisi selle seose tõesuses veenda.
Fibonacci jada
Fibonacci jada iga järgnev liige tekib kahe eelneva liikme liitmisel. Jada alustamiseks tuleb meil seega lihtsalt määrata kaks esimest liiget
Kõik järgnevad liikmed saame seejärel lihtsalt välja arvutada.
Näiteks
ja nii edasi. Üldkujus võiksime kirjutada Fibonacci jada liikmeid siduva võrrandi
Fibonacci arvud tulevad esile erinevates ja üllatavates kohtades. Üks lihtsam ülesanne, mille lahendavad Fibonacci arvud, on järgmine:
Kui mitu erinevat võimalust on n astmega trepist ülesronimiseks, hüpates korraga alati kas ühe või kaks astet edasi? Näiteks kolmeastmelisest trepist on võimalik üles minna kolme moodi: 1 + 1 + 1, 1 + 2 või 2 + 1, neljaastmiselisest viit moodi jne.
Üllatavalt palju rakendatakse Fibonacci arve viimasel ajal informaatikas: nende abil üritatakse tekitada juhuslikke arve, leida uusi otsingualgoritme ning luua isegi andmestruktuure. Kahtlustatakse, et Fibonacci jada on kasutatud ka muusika komponeerimiseks ning hoolikas loodusvaatleja leiab Fibonacci jadaga seotud spiraale ja mustreid ka kosutaval matkal.
Lisaks selgub, et Fibonacci järjestikuste liikmete suhe läheneb ühele kindlale arvule. Veelgi enam, see arv pole mingi suvaline arv, vaid niinimetatud kuldlõike suhtarv
Kuldlõike suhtarv on leidnud läbi ajaloo palju austust ja lugupidamist. Tema nimetus tuleb sellest, et ta peaks olema aluseks ilusaimatele proportsioonidele. Näiteks arvatakse, et just kuldlõige annab ristküliku jaoks kõige ilusama pikkuse ja laiuse proportsiooni. Seetõttu on nii mõnigi autor otsustanud ka oma raamatu välja anda just nendes proprotsioonides.
Siinkohal lõpetame veel tänaseks lahendamata matemaatilise küsimusega. Kas eksisteerib lõpmata palju Fibonacci arve, mis on algarvud (esimesed sellised arvud: 2, 3, 5, 13, 89, 233, 1597)? Arvatakse, et vastuseks on jah, aga seda tõestada ei osata. Huvitav, mis selles nii rasket on?
Väike mõistatus neile, kellel on aega ja agarust ülearu:
Antud on ühe jada algus:
Mis on jada järgmine liige?