Elektriväli
Elektriväli

Elektrijõud ei vaja mõjumiseks kontakti nagu ka gravitatsiooni- ja magnetjõud. Mõju avaldub elektriliselt laetud kehade ümber oleva elektrivälja kaudu. Elektriväli ümbritseb iga laetud keha. Elektrivälja aitavad paremini ette kujutada elektrivälja jõujooned.

Elektrivälja jõujoone puutuja suund mingis punktis näitab elektriväljas selles punktis positiivsetele laengutele mõjuva elektrijõu suunda.

9. klassis käsitlesime magnetvälja jõujooni. Neid on suhteliselt lihtne näidata rauapuru ja magnetite abil – rauapuru orienteerub jõujoonte-sihiliselt ja tekitab nähtava joonestiku. Elektrivälja jõujooni on keerulisem näidata, kuna vajalikud katsevahendid on tehnilisemad ja eeldavad suure pingeväärtusega vooluallika kasutamist.

Katse seemnete ja elektroodidega
Joonis 1.10. Katse elektrivälja jõujoonte uurimiseks.

Katse jaoks on vaja Petri tassi, viskoosset vedelikku (näiteks kastoorõli), võimalikult pisikesi taimeseemneid, mis võiksid olla tumeda värvusega (näiteks puneseemned), vasktraati ja elektrofoormasinat. Vasest valmistatakse elektroodid ja asetatakse viskoossesse vedelikku, kuhu on puistatud seemneid (vt joonis 1.10). Kui ühendada elektroodid elektrofoormasina klemmidega, orienteeruvad seemned piki elektrivälja jõujooni.

Miks see nii on? Elektriväljas tekivad seemnete otstesse indutseeritud laengud. Laengutele mõjub elektrivälja suunas jõud, positiivsetele ühes, negatiivsetele teises suunas, mistõttu seemned orienteeruvad elektriväljasuunaliselt. Üksteise lähedal asetsevate seemnete positiivne ja negatiivne pool tõmbuvad samuti, mistõttu tekivad miniahelad. Et sellised miniahelad tekivad elektrijõu mõjumise suunas, siis näitavad need meile elektrivälja jõujooni.

Joonis 1.11. a) Kahe sirge traadi ja b) kahe kera tekitatud elektriväli.

Elektriväli on homogeenne, kui selle jõujooned on paralleelsed. Joonisel 1.11 a on elektrivälja jõujooned kahe sirge paralleelse traadi vahel. Näeme, et ka elektrivälja jõujooned on paralleelsed, kaardudes ainult traadi otstel. Seega on sirgete traatide, samuti ka tasaste plaatide vahel elektriväli heas lähenduses homogeenne.

Kahe kera vahel on elektriväli ebaühtlane ehk mittehomogeenne – elektriväli ja jõujooned on tihedamalt laetud kehade ümber (joonis 1.11 b). Teame, et laetud kehade lähedal on elektrijõud tugevamad (Coulomb’i seadus). Seega võime väita, et mida tugevam on elektrijõud, seda tugevam on elektriväli ja seda tihedamalt paiknevad elektrivälja jõujooned.

Vaatame joonist 1.12. Olgu kahe vastasmärgiliselt laetud keha vahele asetatud positiivselt laetud proovilaeng, st elektrilaeng, mille enda tekitatud elektriväli uuritavat elektrivälja oluliselt ei mõjuta.

Joonis 1.12. Elektriväljas proovilaengule mõjuv jõud.

Kui kehade laengud on absoluutväärtuselt võrdsed, mõjutavad nad proovilaengut võrdsete ja samasuunaliste jõududega ja . Kui me need jõud kokku liidame, saame proovilaengule mõjuva kogujõu, mis on kaks korda suurem, kui proovilaeng oleks ainult ühe laetud keha elektriväljas.

Elektrivälja omadust mõjutada laetud kehi kirjeldab elektrivälja tugevus. Elektrivälja tugevus näitab, millises suunas mõjuks elektrijõud elektrivälja asetatud positiivsele laengule. Elektrivälja tugevus on seega vektoriaalne suurus ja elektrivälja tugevuse suund ühtib mistahes punktis elektrivälja jõujoonte puutuja suunaga. Nimetame edaspidi elektrivälja tugevuse vektorit lühidalt E-vektoriks. Joonisel 1.12 on jõuvektorite suunad ühtlasi ka E-vektori suunaks.

Elektrivälja tugevust saab defineerida valemiga

kus tähistab kehale mõjuvat elektrijõudu ja on selle keha laeng. Seega elektrivälja tugevus näitab positiivsele ühiklaengule mõjuvat jõudu.

Elektrivälja tugevuse tähis on ja ühik .

1. näidisülesanne

Äikesepilves on mõõdetud elektrivälja tugevuseks - . Kui suur on sellises elektriväljas elektronile mõjuv elektrijõud?

Lahendus

Elektrivälja tugevust defineerivast valemist

saame avaldada elektrijõu

Ülesande tekstis on elektrivälja tugevus määratud vahemikuna. Valime elektrivälja tugevuseks näiteks . Elektroni laeng on . Nii et

.

Miinusmärk vastuses näitab, et elektronile mõjuv jõud on vastupidine E-vektori suunale. Edaspidi me kasutame elektrijõu arvutamiseks pigem jõu absoluutväärtuseid. Seega saime tulemuseks, et elektronile mõjub jõud .

Kas elektron hakkab selle mõjul liikuma? Küllap hakkab, sest elektroni mass on suurusjärgus ja seega kiirendus on tohutu, jäädes suurusjärku .

On teada, et sellisest elektriväljast välgu tekitamiseks siiski ei piisa. Äikesepilves on elektronid seotud vee molekulidega ning nende vabastamiseks on vaja elektrivälja, mille tugevus on umbes .

2. näidisülesanne

Hinda elektrivälja tugevust 2cm kaugusel elektriseeritud plastikjoonlauast, kui joonlaua laeng on ja laeng koondatud ühte joonlaua mõõtmetega võrreldes väikesesse piirkonda.

Lahendus

Kasutame Coulomb’i seadust ja elektrivälja tugevuse definitsioonvalemit:

Tähistame elektrivälja tekitava laengu -ga:

ja asendame esimese valemi teise valemisse:

Arvutades saame

Vastuse ümardame ühe tüvenumbrini, sest ka lähteandmed on ühe tüvenumbriga ja tegu on hinnangulise suurusega.

Saadud elektrivälja tugevuse väärtus ei ole eriti suur võrreldes äikesepilve elektrivälja tugevusega. Samas on see piisav, et panna induktsioonilaenguga paberitükikesi selles kauguses liikuma.

Väli erineb ainest selle poolest, et kui näiteks mitme erineva laengu tekitatud väljad saavad koos eksisteerida ühes ruumipunktis, siis näiteks kaks prootonit samaaegselt ühes kohas olla ei saa. Lisaks saab väljasid liita. Nii näiteks on tõusud ja mõõnad ookeanis tugevamad siis, kui Kuu ja Päike asuvad Maa suhtes ühel pool. Nõrgemad on nad siis, kui Kuu ja Päike on Maa suhtes vastaspooltel. Võime väita, et Kuu ja Päikese gravitatsiooniväljad liituvad.

Kui ruumis on mitu laetud keha, siis nende elektriväljad liituvad. Sellises elektriväljade liitumises ehk superpositsioonis tekkiv elektrivälja tugevus leitakse, kui omavahel liidetakse laetud kehade elektrivälja tugevuste vektorid. Vektorite liitmisel tekkiva vektori suund määrab ka summaarses elektriväljas proovilaengule mõjuva jõu suuna.

3. näidisülesanne

Olgu elektrivälja allikateks absoluutväärtuselt võrdse suurusega laengud ja , mis on vastavalt negatiivne ja positiivne (joonis 1.13). Konstrueeri nende laengute tekitatud summaarne E-vektor punktis .

Lahendus

Joonis 1.13. Elektriväljade liitumine.

Konstrueerime punktis mõlema laengu tekitatud E-vektorid ja tähistame need  ja .

Kuna punkt asub mõlemast laengust samal kaugusel, on laengute tekitatud elektrivälja tugevuse väärtused, seega ka E-vektorite pikkused ühesugused. E-vektori suund mingis punktis on määratud sellesse punkti asetatud positiivsele proovilaengule mõjuva jõu suunaga. Seega on  suunatud laengu suunas ja  on suunatud laengust eemale.

Summaarse elektrivälja  E-vektori suuna saame, kui liidame laengute E-vektorid. Kasutame selleks vektorite liitmise rööpküliku reeglit.

E-vektori suund määraks ka sellesse punkti asetatud prootonile mõjuva jõu suuna. Elektronile mõjuv jõud oleks vastassuunaline.

Faraday puur
Joonis 1.14. Lennukiga on äikeses üsna turvaline lennata.

Paljud meist on külastanud Energia Avastuskeskust Tallinnas, kus demonstreeritakse Faraday puuri, et varjestada külastajaid Tesla transformaator tekitatud tugeva elektrivälja eest. Miks on elektrivälja vaja karta? Sest tugev elektriväli võib tekitada ohtliku elektrivoolu.

Lennukikere käitub Faraday puurina, kaitstes meid pikselöögi eest. Ka metallkerega autos on äikese ajal turvaline. Kuidas töötab puur, mis kannab inglise füüsiku Michael Faraday (1791–1867) nime?

Faraday puuriks on metallist korpus või metallvõrgust puur. Faraday puur töötab elektrilise induktsiooni põhimõttel. Joonisel 1.15a näeme olukorda, kus väline elektriväli puudub. Metallkorpuse laengud paiknevad sel juhul ühtlaselt kogu korpuse ulatuses ning korpus tervikuna on neutraalne.

Joonis 1.15. Faraday puuri tööpõhimõte.

Välise elektrivälja tekkides paiknevad laengud ümber ja korpuse sees tekib sisemine elektriväli (joonisel 1.15b tähistatud punaste nooltega). Elektriväljad  ja on absoluutväärtuselt võrdsed ja vastassuunalised, nii et liitudes on summaarse elektrivälja tugevuseks jällegi .

Kui väline väli tugevneb, siis teeb seda ka sisemine väli, sest indutseeritud laeng muutub suuremaks ja summaarse elektrivälja tugevus on ikka võrdne nulliga. Seega metallkorpuses elektriväli puudub.

Faraday puuri kasutatakse mikrolaineahju tekitatud mikrolainete varjestamiseks, et kiirgus ei pääseks väliskeskkonda. Samuti telekommunikatsioonikaablite signaali kaitsmiseks väliste signaalide ehk müra eest.

Niisiis saab elektrivälja kasutada laengute kiirendamiseks. Just elektrivälja põhjustatud elektrijõud paiskab röntgenlambis elektronid vastu sihtmärki. Genfis asuvas CERNi hiidlaboris kiirendatakse prootoneid ja plii-ioone ning uuritakse nende põrkeid. Elektriväli paneb laengud liikuma päevavalguslampides. Looduses kiirendab elektriväli laenguid äikesepilvedes. Ka elektrivoolu tekkeks ükskõik millises juhtmes või metallesemes on vaja elektrivälja.

Osakestepõrgutis LHC
Joonis 1.16. Osakestepõrgutis LHC kokkupõrkel tekkivad osakesed.

Kui enamasti kiirendatakse CERNis elektrivälja abil prootoneid, et LHCs (suures hadronite põrgutis) nende põrkeid uurida, siis korra aastas juhitakse kiirendisse plii-ioonid. Plii-iooni mass on palju suurem prootonite omast [] ja seetõttu on nende ioonide kokkupõrke energia väga suur. Kokkupõrke tulemusena tekib tohutu kogus osakesi, mis kosmoloogilise Suure Paugu mudeli järgi täitsid meie kõige varajasemat universumi.

Täpsemalt on tegu kvark-gluuon plasmaga, millest hilisemas faasis hakkavad moodustuma prootonid. Kvargid on osakesed, millest koosnevad nii prootonid kui ka neutronid. Gluuonid (ingl in glue ’liimis’) on osakesed, mis vahendavad kvarkide-vahelist vastastikmõju, seega hoiavad koos ka prootoneid ja neutroneid. Kvark-gluuon plasma uurimine loob selgust meie varasema universumi arengule.

Ülesanded
Arvuta, kui suur on elektrivälja tugevus ioonist kaugusel. Kas see on sinu arvates suur või väike väljatugevus? Selgita vastust.
Kaks laengut ja asuvad üksteisest kaugusel.
a) Kui suur on kummagi laengu tekitatud elektrivälja tugevus punktis , mis asub täpselt kahe laengu vahel?
b) Kui suur on laengute tekitatud elektrivälja tugevus punktis ?
c) Visanda joonis koos vastavate väljavektoritega.
d*) Lisaülesanne. Kui kaugel esimesest laengust asub punkt, kus väljatugevus on võrdne nulliga?
Konstrueeri elektrivälja vektor punktis järgmistes olukordades.
Seest tühi metallkera on laetud positiivselt.
a) Joonista elektrivälja jõujooned nii kera pinna lähedal kui ka kera keskpunktis.
b) Selgita joonise abil, miks kera keskpunktis on elektrivälja tugevus .
Milliseid järgmisi osakesi saab elektriväljaga kiirendada? a) Neutron, b) elektron, c) tolmukübeke, d) tahmaosake, mis väljub elektrijaama korstnast, f) α-osake ehk heeliumi aatomituum. Põhjenda vastust.
Miks on telefonilevi nõrk või puudub, kui sõidame liftis või viibime metallkonstruktsiooniga ehitises?
Lisaülesanne. Teame, et laetud osakesi katioone ja anioone saab kiirendada elektrivälja abil. Esita idee, kuidas saaks määrata ioniseeritud osakeste massi.
Additional materialsAdditional tasks