Logaritmfunktsioon

Oletame, et meile on antud mingi alus a > 0, a ≠1 nagu eksponentsiaalfunktsiooni korralgi. Kui ay = x, siis kirjutame loga(x) = y ja loeme, et logaritm arvust x alusel a on y. Kolm sümbolit järjest! Näiteks kuna 25 = 32, siis log2(32) = 5 ehk logaritm arvust 32 alusel 2 on 5.

Logaritmfunktsiooni alusel a saame nüüd, kui vaatamegi arvu x funktsiooni sisendina. Ei ole muidugi kohe päris selge, mis loom see logaritmfunktsioon ikka on ning mis väärtuste jaoks ta on üldsegi defineeritud.

Ilusam on võibolla mõelda geomeetriliselt. Nimelt kuna logaritmfunktsioon on eksponentsiaalfunktsiooni pöördfunktsioon, võib teda kirjeldada eksponentsiaalfunktsiooni enda graafiku abil.

Kui joonistame koordinaattasandile eksponentsiaalfunktsiooni y = ax graafiku, siis saame logaritmfunktsiooni alusel a lihtsalt siis, kui x- ja y-teljed ära vahetame. Nagu juba nägime, võib sellest mõelda ka kui eksponentsiaalfunktsiooni graafiku peegeldamisest sirgest y = x.         

Graafikult näeme, et logaritmfunktsioon on kenasti defineeritud kõikide positiivsete reaalarvude jaoks – põhjuseks on muidugi see, et eksponentsiaalfunktsiooni väärtused saavad olla ainult positiivsed arvud.

Võib tekkida ka teine küsimus: miks me nõudsime, et alus a peab olema positiivne? Vastus tuleneb eelmisest peatükist: eksponentsiaalfunktsioon ise on defineeritud ainult positiivsete aluste korral. Negatiivsete alustega tekkis ju teadupärast probleeme: näiteks ei oska me reaalarvude raames võtta arvu –4 ruutjuurt ehk tõsta teda astmele 0,5. See on küll võimalik, tuues sisse kompleksarvud [lk  89], aga praegu tahaksime, et meie funktsioonid võtaksid nii sisendina kui annaksid ka väljundiks ainult reaalarve.

 

Logaritm: tehe või funktsioon?

Logaritm tuleb mõnikord lisaks funktsioonile esile ka tehete kontekstis, kui temast räägitakse kui logaritmimisest. See võib alguses üllatav tunduda, aga tihti võib mõnest matemaatilisest objektist või teisendusest mõelda mitut moodi.

Näiteks ka astendamisest võisime mõelda kui tehtest või kui funktsioonist. Tehtest rääkisime peatükis arvu aste – valisime arvu a ja arvu b ning andsime tähenduse arvu astmele ab – kahest arvust meisterdasime kokku ühe  kolmanda.  Eelmises peatükis aga fikseerisime astendamise aluse a ja rääkisime hoopis eksponentsiaalfunktsioonist ax – masinast, mis võttis sisendiks reaalarve ja andis vastu positiivseid reaalarve.

Samamoodi võime logaritmimisest mõelda kui tehtest: kui valime positiivse reaalarvu a logaritmi aluseks ning mingi arvu b, siis võime võtta logaritmi loga(b). Niipea, kui aga oleme otsustanud fikseerida mõne aluse, näiteks kahe, võime vaadelda funktsiooni y = log2(x).

Muidugi ei piirdu näited ainult astendamise ja logaritmimisega, lugeja võib veenduda, et ka näiteks liitmisest võime mõelda nii tehete kui funktsioonide raames. Selline paindlikkus on matemaatikale üsna omane – mida rohkem vaatevinkleid, seda rohkem võimalusi.

Ka selles peatükis käsitleme logaritmi nii ühes kui teises võtmes.

 

Logaritmfunktsiooni omadused

Kõige olulisem on vahest logaritmfunktsiooni juures see, et tegemist on eksponentsiaalfunktsiooni pöördfunktsiooniga. Oleme seda juba mitu korda öelnud, aga sõnastame selle veel korra ümber ka skemaatilis-matemaatiliselt!

Logaritmfunktsiooni võime võtta kõikidest positiivsetest reaalarvudest. Väärtustena annab ta lahkelt vastu kõikvõimalikke reaalarve. Ka logaritmfunktsiooni käitumine sõltub tema alusest. Näiteks logaritmfunktsioonid alusel 2 ja alusel ½ on teineteise peegeldused x-telje suhtes:

Põnev on ka meenutada, et eksponentsiaalfunktsiooni korral tuli aluse pöördarvuks muutmisel funktsiooni peegeldada hoopis y-teljest. Oskad seda mustrit selgitada?

Ka logaritmfunktsioon on kenasti pidev. Vaadeldes natuke tema graafikut näiteks ühest suurema aluse korral, näeme, et logaritmfunktsioon küll kasvab piiramatult, aga järjest aeglasemalt.

Tõepoolest, logaritmfunktsiooni kasvu kiirust näitav tuletis on antud funktsiooniga kujus

ning see on suurte x väärtuste korral nullist juba üsna eristamatu.

Konstandi b väärtus sõltub logaritmfunktsiooni alusest, näiteks kui aluseks on e, on b võrdne ühega nagu eelneval joonisel.

Muudel juhtudel on selleks konstandiks

kus a on logaritmi aluseks. Miks see nii on, selgitame juba varsti logaritmi erinevate aluste peatükis.

Korrutamisest liitmine

Kui eksponentsiaalfunktsioon tegi liitmisest korrutamise, siis logaritmfunktsioon teeb korrutamisest liitmise. Kuna tegemist on eksponentsiaalfunktsiooni pöördfunktsiooniga, pole seda muidugi raske uskuda. Enda täielikuks veenmiseks võib aga näiteks läbi teha järgneva arutelu.

Kokkuvõttes saame, et

Kas sellest järeldub ka kohe, et loga(xy) = loga(x) + loga(y)? Päris automaatselt ei järeldu, peame oleme ettevaatlikud. Näiteks teame ju, et ruutu võtmisel annavad 3 ja –3 sama tulemuse, ja seega kui teaksime, et a2 = b2, ei saaks me järeldada, et a = b.

Õnneks on eksponentsiaalfunktsiooni korral olukord lihtsam. Nägime eksponentsiaalfunktsiooni graafikult, et tegemist on kas rangelt kasvava või rangelt kahaneva funktsiooniga ja seega ei võta ta ühtegi väärtust mitu korda. Seega kui teame, et ax = ay, võime järeldada, et x = y. Nii võime sellest, kui

tõesti ka järeldada, et

 

Logaritmi erinevad alused

Nagu eksponentsiaalfunktsiooni korral, on ka logaritmfunktsiooni iseloom alusest sõltuvalt natuke erinev. Samas on ka logaritmfunktsiooni aluse vahetamine päris lihtne ja analoogne eksponentsiaalfunktsiooni puhul toimunuga.

Nimelt oletame, et meile on antud mingi arvu y logaritm alusel 3. Tähistame seda x = log3(y) ning võime võrdväärselt ka kirjutada 3x = y. Kuidas nüüd üle minna alusele 2?

Eksponentsiaalfunktsiooni peatükis nägime, et võime arvu 3 kirjutada arvu 2 astmena, ehk 2w = 3. Edasi saame kirjutada

See tähendab täpselt, et log2(y) = wx. Aga me teame juba, et x = log3(y) ning samas puhtalt definitsioonist w = log2(3).

Seega saame log2(y) = log3(y) · log2(3) ehk logaritmfunktsiooni alusel 2 saame lihtsalt, kui korrutame logaritmfunktsiooni alusel 3 ühe kindla arvuga. Selle arvu võime leida: log2(3) ≈ 1,58 ning  log2(x) ≈ 1,58 · log3(x).

Üldkujus astme vahetamist, üleminekut aluselt a alusele b iseloomustab valem:

Jällegi tähendab see ainult, et astme vahetamiseks korrutame logaritmfunktsiooni lihtsalt läbi ühe teatava arvuga – arvuga logb(a). Seetõttu jõuame pisut ehk üllatavale järeldusele: erinevatel alustel logaritmfunktsioonid on äärmiselt sarnased, võime alustada logaritmfunktsioonist alusel 2 ja saada kõik teised logaritmfunktsioonid seda funktsiooni lihtsalt nullist erineva arvuga läbi korrutades.

Millist alust valida?

Ka seekord on teatud olukordades mõne alusega kergem ja mugavam ringi käia, eriti kui sõna saavad ka loodusteadlased ja arvutimehed. Logaritm mingil alusel a muutub oluliseks, kui vaadeldav „suurusjärk” ehk olulised erinevused suurustes on määratud arvu a kordsetega.

Päriselus ja füüsikas teeme arvutusi kümnendsüsteemis. Loomulikud suurusjärgud on ühelised, kümnelised, sajalised ehk siis kümnekordsed. Seega on mugav kasutada ka logaritme alusel 10.

Kui aga näiteks töötame kahendsüsteemis, on kõik arvud antud kahe astmete summana ehk oluline muutus toimub arvude kahega korrutamisel. Nii on ka loomulik suurusjärk kaks ning loomulik logaritmimine käibki alusel kaks. Kuna arvutid teevad kõike kahendsüsteemis, tuleb ka logaritm alusel kaks ehk log2x esile just arvutitega tegelemisel.

Logaritmi alusel e nimetatakse naturaallogaritmiks ning teda tähistatakse vahel ka  loge(x) asemel lihtsalt ln(x)-ga. Nagu nimest võib aimata, on temaski midagi loomulikku ja ilusat.

Näiteks nägime juba, et sel juhul on tuletis kõige lihtsamas kujus:

Arvust e oleme juba rääkinud nii ilusate arvude peatükis [lk 102] kui äsja eksponentsiaalfunktsiooni juures. Temaga on tore koostööd teha.