Vahelduvvool
Vahelduvvoolu genereerimine
Joonis 1.17

Vahelduvvool on elektrivool, mille tugevus ja suund perioodiliselt muutuvad. Energiasüsteemides kasutatakse sinusoidaalset voolu (joonis 1.17.), mida väljendab voolutugevuse ajas muutumise võrrand, kus i on voolutugevuse hetkväärtus,  voolutugevuse maksimaalne väärtus ja ringsagedus (võngete arv sekundis).

Tegemist on elektromagnetilise harmoonilise sundvõnkumisega, sest sinusoidaalselt muutuv vool tekib perioodiliselt muutuva elektromotoorjõu mõjul.

Vahelduvvoolu toodetakse vahelduvvoolugeneraatoriga, mille töö põhineb elektromagnetilise induktsiooni nähtusel. Kui asetada juhtivast materjalist kontuur (juhtmekeerd) pindalaga magnetvälja magnetinduktsiooniga , siis läbib kontuuri magnetvoog

EM. Nurk kirjeldab kontuuri asendit magnetvälja jõujoonte suhtes. Magnetvoo muutumisel indutseeritakse kontuuris elektromotoorjõud, mille suurus sõltub magnetvoo muutumise kiirusest

Tehniliselt lihtsaim viis magnetvoogu muuta on panna kontuur magnetväljas pöörlema. Joonisel 1.18. a kujutatud asendis on kontuuri läbiv magnetvoog maksimaalne, sest ja . Magnetvoog muutub harmooniliselt ja kõige kiiremini siis, kui kontuur on teinud veerand pööret. Sellel hetkel on ka indutseeritud elektromotoorjõud maksimaalne. Kui kontuur pöörleb nurkkiirusega

siis tekib temas samuti harmooniliselt muutuv elektromotoorjõud

Elektromotoorjõu maksimaalne väärtus εm sõltub võrdeliselt magnetinduktsioonist, pindalast ja nurkkiirusest. Elektromotoorjõud on magnetvoo suhtes veerand perioodi nihkes nagu siinuse ja koosinuse graafikud.

Kui pöörleva kontuuri otsad ühendada tarbijaga, läbib teda vahelduvvool. Voolu tugevus on Ohmi seaduse järgi (valem 1.6.) määratud elektromotoorjõu ja vooluringi kogutakistuse suhtega

Voolu maksimaalväärtuse ja pinge maksimumi valemid on analoogsed alalisvoolu vastavate seostega.

(1.10.)

(1.11.)

Vooluallika sisetakistuseks r võime lugeda antud juhul generaatori pöörleva mähise takistust. 

Euroopa vahelduvvooluvõrkudes kasutatakse sagedust , seega .

Küsimused
Määrake joonise 1.18. a põhjal raamis tekkiva induktsioonivoolu suund. Tooge esile lahenduse kõik etapid.
Hetkel, kui vahelduvvoolu generaatori pöörlevat mähist läbiv magnetvoog on maksimaalne, mähises induktsiooni elektromotoorjõud puudub, kui aga magnetvoog puudub, siis on elektromotoorjõud maksimaalne. Miks see nii on?
Miks on vahelduvvoolu generaatori mähises tavaliselt palju juhtmekeerde?
Summary

Vahelduvvool

Vahelduvvool on elektrivool, mille suund ja tugevus ajas perioodiliselt
muutub.

Vahelduvvoolu tekitamine

Vahelduvvoolu tekitamine põhineb elektromagnetilise induktsiooni nähtusel. Näiteks tekib magnetväljas pöörlevas juhtmekeerus sinusoidaalselt muutuv elektromotoorjõud. Põhiline osa elektrienergiast toodetakse vahelduvvoolugeneraatoritega, mille kä

Ülesanded
Vahelduvvoolu võrgus on sagedus . Arvutage vahelduvvoolu ringsagedus ja periood.
Kui suur magnetvoog läbib kontuuri joonisel 1.18. a? Kui suur on magnetvoog läbi kontuuri, kui see sooritab veerand pööret, pool pööret, täispöörde?
Määrake joonise põhjal raami läbiva magnetvoo muutumise kiirus. Raam sooritab veerand pööret. Kas selles asendis magnetvoo muutumise kiirus on suurem või väiksem?
Additional materialsAdditional tasks
Voolutugevuse, pinge ja võimsuse efektiivväärtused

Kui paigalolevat juhti läbib vool, eraldub temas elektrivoolu tööga võrdne soojushulk

Valem kehtib alalisvoolu korral, kuid vahelduvvoolu tugevus ajas muutub. Seetõttu tuleb vahelduvvoolu puhul valemisse panna voolutugevuse ruudu keskmine väärtus. Trigonomeetriliste teisendustega saab näidata, et siinuse absoluutväärtuse keskmine ühe perioodi jooksul on .

Kui üheoomist takistit läbib alalisvool tugevusega 1A, eraldub takistis sekundi jooksul džaul energiat. Kui sama takistit läbib sama aja jooksul vahelduvvool maksimaalväärtusega

Joonis 1.19.

eraldub ka sama hulk energiat (joonis 1.19.). Vahelduvvoolu tugevuse efektiivväärtuseks nimetatakse sellist alalisvoolu tugevust, mille korral eraldub vahelduvvooluringis võrdse aja jooksul sama suur soojushulk kui alalisvoolu korral.

(1.12.)

Vahelduvvoolu pinge muutub ajas samuti siinuseliselt ja pinge efektiivväärtus on

(1.13.)

Koduse pistikupesa klemmidel peaks olema pinge 230V. Siin on tegemist pinge efektiivväärtusega. Teataval hetkel on vastava siinuseliselt muutuva pinge maksimaalväärtus korda suurem, st . Takistil eraldunud võimsuse saame arvutada valemiga

(1.14.)

Alalisvoolu korral kehtisid Ohmi seadused vooluringi osa ja kogu suletud vooluringi kohta vastavalt 

ja

Seosed kehtivad ka vahelduvvoolu hetkväärtuste jaoks, sest väga väikese ajavahemiku jooksul pinge ja voolutugevus ei jõua oluliselt muutuda. Hetkväärtusi tähistame väikeste tähtedega. Voolutugevuse hetkväärtus on

Kui voolutugevuse maksimum saabub samal ajal pingemaksimumiga, saame voolutugevuse maksimumi

millest voolutugevuse efektiivväärtuse jaoks saame

Efektiivväärtused on kasutusele võetud seetõttu, et nende abil saame vahelduvvoolu arvutustes kasutada alalisvoolu valemeid.

Vahelduvvoolu ampermeeter ja voltmeeter näitavad meile samuti efektiivväärtusi. Oluline tingmärk mõõteriista skaalal on vooluliik. Vahelduvvoolu tähiseks on ja alalisvoolul .

Kui vahelduvvooluringis on induktiivpool, siis pinge kasvades voolutugevuse kasv eneseinduktsiooni (EM lk 69) tõttu hilineb. Voolutugevuse maksimum jääb pingemaksimumist maha ja vooluringis eralduvat võimsust ei saa valemi 1.14. abil enam arvutada. Aga kui vahelduv­voolu­­ahelas on kondensaator, siis voolutugevuse maksimum saabub pingemaksimumist varem ja voolutugevus ei võngu samuti sünkroonselt pingega.

Küsimused
Vahelduvvoolu graafikuks on sinusoid, mille keskmine väärtus ajas on . Kuidas on siis üldse võimalik soojusenergia eraldumine elektripliidis?
Vahelduvvoolu ja alalisvoolu generaatoritel on mõlemal nimipinge . Kumma generaatoriga ühendamiseks peaks juhtmete isolatsioonikiht olema paksem? Miks?
Summary

Vahelduvvoolu tugevuse efektiivväärtus

Vahelduvvoolu tugevuse efektiivväärtus on selline alalisvoolu tugevus, mille korral juhis eraldub samasugune võimsus kui vahelduvvoolu korral.

Vahelduvvoolu pinge ja voolutugevuse efektiivväärtused

Pinge ja voolutugevuse maksimaalväärtuste ning efektiivväärtuste vahel on järgmised seosed:

ja

Vahelduvvoolu mõõteriistad näitavad mõõtmisel efektiivväärtusi.

Ülesanded
Mõõtes vahelduvvoolu voltmeetriga seinakontaktis pinget, saime näiduks . Arvutage pinge maksimaalväärtus. Missuguse vähima ajavahemiku jooksul saabub pingemaksimum ja -miinimum? Võrgupinge sagedus on .
Pinge mõõdeti voltmeetriga, mille mõõtepiirkond oli ja täpsusklass . Arvutage mõõtmise absoluutne ja suhteline piirviga.
Additional materialsAdditional tasks
Trafo. Elektrienergia ülekanne

Elektrienergiat on mugav kasutada, aga keeruline suurel hulgal salvestada. Seetõttu tarnitakse elektrienergia jaotusvõrgu vahendusel elektrijaamast otse lõpptarbijani. Ent mida pikemad on liinid, seda suuremad on ka kaod. Ülekandmisel suurtele kaugustele ja paljudele tarbijatele esineb ebasoodsaid asjaolusid. Koos pikkusega kasvab juhtme takistus ja soojuslikud energiakaod ning väheneb pinge. Tarbijad ühendatakse rööbiti, mis suurendab voolutugevust generaatoris ja vähendab tarbimise kasvamisel klemmipinget. 19. sajandi lõpukümnendil jõuti järeldusele, et oleks parem kasutada vahelduvvoolu ja tõsta selle pinge enne ülekannet võimalikult kõrgele. Pinge tõstmiseks oli äsja leiutatud transformaator ehk trafo.

Juhis eralduv soojushulk on võrdeline voolutugevuse ruuduga (). Vähendades voolutugevust ülekandeliinides korda, vähenevad soojuskaod korda. Kui aga tahame edastada eelnevaga võrdset võimsust , peame pinget tõstma korda.

Trafo on elektromagnetilise induktsiooni nähtusel põhinev seadis vahelduvpinge muutmiseks. Trafo koosneb vähemalt kahest erineva keerdude arvuga  ja  raudsüdamikule keritud mähisest (joonis 1.20. a). Vooluallikaga ühendatud mähist nimetatakse primaarmähiseks ja tarbijaga ühendatud mähist sekundaarmähiseks.

Joonis 1.20. a - lülitus vooluallika ja tarbijaga (hõõglamp), b - skeemitähised

Primaarmähist läbiv vahelduvvool tekitab muutuva magnetvälja, mida mähise sees olev raudsüdamik annab edasi sekundaarmähisesse. Muutuv magnetväli tekitab sekundaarmähises muutuva elektromotoorjõu. Kui sekundaarmähisega ühendada tarbija, läbib teda muudetud pingega vahelduv­vool.

Magnetvoo muut on mõlemas mähises ligikaudu võrdne. Seega mähiste pinged on võrdelised keerdude arvuga ja ligikaudu pöördvõrdelised voolutugevustega.

Kui vahetada vooluallika ja tarbija kohad, saame pinget vähendava trafo (joonis 1.20. a) asemel pinget tõstva trafo.

Generaatori pinge ei ole ülekande jaoks piisav ja seetõttu tõstetakse elektrijaamas trafoga pinge vajalikule tasemele (näiteks ). See rakendatakse kõrgepinge ülekandeliinidele. Lähenedes tarbijatele, vähendatakse alajaamades järk-järgult pinget, kuni pistikupessa jõudva 230V-ni. Elektrijaamad ei tegutse eraldi, vaid on ühendatud ühtsesse võrku teiste Eestis asuvate jaamadega ja ka Venemaa ning Lätiga. Soomega saame vahetada elektrienergiat kõrgepingelise alalisvooluna kahe merekaabli kaudu.

Trafos puuduvad liikuvad osad, energiakaod mähistes ja südamikus on püütud viia minimaalseks. Võimsate trafode kasutegur

küünib kuni 99%-ni.

Küsimused
Miks peab pinget madaldava trafo sekundaarmähis olema jämedamast traadist?
Miks ei ole otstarbekas elektrijaama trafoga pinget tõsta ükskõik kui kõrgele?
Summary

Trafo

Trafo on elektriseadis vahelduvpinge muutmiseks ja see töötab elektromagnetilise induksiooni nähtusel. 

Ühe ja sama trafoga on võimalik vahelduvpinget nii tõsta kui ka langetada.

Ülesanded
Transformaatori primaarmähises on 2300 keerdu. Mitu keerdu peaks olema sekundaarmähises, et muuta tavaline võrgupinge -voldiseks? Tavaline võrgupinge on 230V.
Mitu korda muudab (suurendab/vähendab) vahelduvpinget joonisel 1.20. a kujutatud trafo?
Joonisel 1.20. a kujutatud trafo primaarmähise vool on 1A. Kui suur vool on sekundaarmähises, kui trafo kasutegur on 70%?
Additional materialsAdditional tasks
Elektrimootor. Elektriohutusest

Elektrimootor muudab elektrienergia mehaaniliseks tööks. Elektrimootori töö põhineb voolu ja magneti ning kahe voolu vahelise vastastikmõju kasutamisel.

Paigutame magneti pooluste vahele juhtivast materjalist raami (mähise), mis saab pöörelda ja millest saab elektrivoolu läbi juhtida (joonis 1.21. a). Paigalolev osa staator ja pöörlev osa rootor on elektriliselt ühendatud kommutaatori abil. Kommutaator koosneb paigalolevatest harjadest, mis on surutud vastu poolrõngakujulisi lamelle. Harjad on ühendatud vooluallikaga ja lamellid rootorimähisega.

Vooluga juhile mõjub magnetväljas jõud (EM lk 29). Jõu suunda saab määrata nn vasaku käe reegliga. Raami vastaskülgedele mõjuvad jõud on vastassuunalised. Tekkinud jõudude paar pöörab raami veerand pööret päripäeva. Selles asendis (joonis 1.21 b) jõud raami enam ei pööra, kuid inertsi tõttu pöörleb lamellidega ühendatud raam edasi ja muudab voolu suuna raamis vastupidiseks. Raamile hakkab uuesti mõjuma teda päripäeva pöörav jõudude paar, st raam jääbki pöörlema.

Eeltoodud põhimõttel töötab nii alalisvoolumootor kui ka nn universaalmootor (joonis 1.22. a), milles pöörleva rootorimähisega jadamisi on ühendatud magnetvälja tekitav paigalseisev staatorimähis. Kui rakendame mootorile vahelduvpinge (joonis 1.22. b), siis muutub voolu suund mõlemas mähises ja rootori pöörlemissuund jääb samaks.

Universaalmootor on kasutatav nii alalisvoolu kui ka vahelduvvoolu korral. See pole küll kõige parema kasuteguriga, kuid pöörlemiskiiruse reguleeritavuse ja odavuse tõttu leiab sageli rakendust kodumasinates ja elektrilistes käsitööriistades. Tööstuses kasutatakse rohkem vahelduvvoolu asünkroonmootoreid (vt lisandused lk 82).

Elektrikahjus­tus­teks on kõige sagedamini tulekahjud, elektrilöögid ning pingekõikumistest ja voolukatkes­tustest põhjustatud arvutite jm rikked. Tulekahjud tekivad tavaliselt juhtmete halbade kontaktide, küttekehade järelevalve puudumise ja vanade elektrisüsteemide ülekoormamise tõttu. Elektrilöögi saanud inimese kahjustusteks on põletus, gaasi tekkimine veres, südame seiskumine või lämbumine lihaste krambi tagajärjel. Inimese närvisüsteemi ja lihaste talitus põhineb elektrisignaalidel, mille elektrilöök võib rivist välja viia, seetõttu ongi inimese jaoks ohtlikum vahelduvvool. Voolutugevus on juba surmavalt ohtlik.

Elektrist tulenevate õnnetuste levinumad põhjused on elektriliste majapidamisriistade isolatsiooni rikkiminek, elektri kasutamine niisketes ruumides, tormide tõttu ülekandeliinide mahalangemine, välgulöök, töötamine elektriliinide vahetus läheduses ja tähelepanematus.

Küsimused
Miks ei koosne rootorimähis tavaliselt ühest, vaid paljudest juhtmekeerdudest?
Mootoris tekitatakse magnetväli tavaliselt raudsüdamikule keritud mähisega. Miks?
Summary

Elektrimootor

Elektrimootor muudab elektrienergia mehaaniliseks tööks. Elektrimootoris kasutatakse voolu ja magnetvälja vastastikmõju.

Ülesanded
Elektrimootori rootoriks on ruudukujuline raam küljepikkusega . Arvutage raami ühele küljele mõjuv maksimaalne jõud, kui voolutugevus raamis on 2A ja staator tekitab magnetvälja 0,1T.
Tehke joonisega 1.21. a analoogne joonis, kui raam on teinud pool pööret. Määrake raamile mõjuvate jõudude suunad ja tähistage need joonisel.
Additional materialsAdditional tasks