Elektronlained orbiidil. Bohri aatom

Elektroni leiulaineid ei sulusta aatomisse muidugi mitte kujuteldava karbi seinad, vaid elektrilised tõmbejõud tuuma ja elektroni(de) vahel. Astume sammu karbimudelilt tegelikkusele lähemale ja  üritame sobitada elektroni laineloomust aatomi planetaarmudeliga. Vaatame lihtsaimat, vesiniku aatomit ainsa elektroniga ringorbiidil raadiusega (joon. 7.4). Kui elektron tiirleb orbiidil, peavad tema leiulained olema orbitaallained, s.o.  tiirutama orbiiti pidi ümber tuuma. Elektroni statsionaarsetele, püsiseisunditele vastavad seisulained. 

Joon. 7.4. Elektronlaine ringorbiidil. Juhul A üksteisele järgnevad lained ühtuvad, lainete tõusuinterferents tekitab püsiva seisulaine. Juhul B kustutab mõõnainterferents laine, elektroni leiutõenäosus kahaneb nulliks, püsiolekut ei teki.

Otsteta ringil saavad orbitaallaineist tekkida seisulained ainult siis, kui laine ringeldes end lakkamatult kordab (joon. 7.4). Selleks peab ringile sobituma parajasti täisarv laineid:

Asendades  de Broglie’ valemist (4.1 ), saame

ehk

kus tähistasime, nagu kvantfüüsikas tavaks, 

on elektroni mass, – tema kiirus. (Meenutame mehaanikakursusest, et mvr on tiirleva elektroni pöördimpulss e. impulssmoment.) Seega on orbiidi raadius ja elektroni orbitaalkiirus , siis ka energia, vastastikuses sõltuvuses. Avaldades   valemist (7.6 ), näeme et püsiseisundeile sobivad üksnes

kus kvantarvuks on n=1,2,3....

Elektroni laineomadused ja orbiidid

Seega järeldub elektroni laineloomusest, et ta võib tuuma ümber tiirelda vaid teatud kindlatel orbiitidel raadiusega rn .

Joon. 7.5. De Broglie laine mehaaniliseks analoogiks võiks olla kahest otsast kinnitatud keele võnkumine, aga veel parem on vaadata võnkuvat rõngast. Rõngal saab püsiv seisulaine tekkida siis, kui sinna sobitub täisarv lainepikkusi. Bohri mudeli orbiite peeti ringikujulisteks ja oli loogiline arvata, et lubatud orbiidid on need, kuhu mahub täisarv elektroni seisulaine lainepikkusi. Kuigi selle laine iseloomu kohta ei olnud veel midagi teada, sobis de Broglie elektronlaine mudelisse väga hästi.
Niels Bohr  (1885-1962) oli väljapaistev taani füüsikateoreetik, üks kaasaegse kvantfüüsika loojaid. Bohr on sündinud, õppinud ja veetnud suurema osa oma elust Kopenhaagenis. Tema isa Christian Bohr oli sealse ülikooli f&uu

Valemi (7.6 ) avaldas 1913. a. esimesena üks maailma tippfüüsikuid, taanlane Niels Bohr (l. nils boor). Tollal ei teadnud ta midagi elektroni laineomadustest. Toetudes vaid intuitsioonile ning soovides seletada aatomi püsivust ja spektraalseeriaid, ta lihtsalt postuleeris (ld. k. postulare - nõudma), et  lubatud orbiitidel, mille raadius rahuldab seost (7.6 ), elektronid ei kiirga, kuigi tiirlevad (Bohri I postulaat). See oli muidugi järsus vastuolus makrofüüsika seadustega ja kohtas füüsikkonnas laialdast umbusku. Kuid nõnda õnnestus Bohril “päästa” planetaarmudel kiirgusvaringust (vt. alajaotus 1.2). Sündis uus, Bohri aatomimudel (joon.7.7 c), mis on mänginud mikrofüüsika arengus väga tähtsat osa. Lainesisu (vastavalt valemeile (7.5 ) ja (7.7 )) andis sellele postulaadile 10 aastat hiljem L. de Broglie.

Joon. 7.6.

Kesktõmbe- e. tsentripetaaljõuksjõuks , mis hoiab elektroni tuuma ümber tiirlemas, on elektrijõud tuuma ja elektroni vahel (joon. 7.6). Coulombi seaduse järgi 

kus on elementaarlaeng,   ja  elektriline konstant. Teatavasti kesktõmbekiirendus

Rakendades Newtoni II seadust , saame

Seega

kust saab arvutada orbiitidele raadiusega rn vastavad energiatasemed . Tulemuseks on

Miinusmärk johtub sellest, et  nullnivooks loetakse elektroni potentsiaalne energia, kui ta on tuumast eemaldatud lõpmata kaugele. Joonisel 7.7 on valemi (7.9 ) järgi arvutatud energiatasemete skeem.

Bohri II postulaadi järgi kiirgab või neelab aatom valgust ainult elektroni hüpetel lubatud orbiitide vahel (joon.7.7), kusjuures tekivad või kaovad footonid energiaga

kus on mingi kõrgema ja madalama taseme energia.

Joon. 7.7. Atomaarse vesiniku spektrijooned (a) ja neid tekitavad siirded (b) vesinikuaatomi energiatasemete vahel. Punktiiris – seeriate serv. (c) Bohri – de Borgile´mudeli mõned "lubatud" orbiidid ja siirded nende vahel.

Vastaku kõrgemale tasemele kvantarvu väärtus , madalamale n=n1. Siis, asendades ja (7.9 )-st, saame

ehk, kuna λf=c,

Võrreldes äsja leitud valemit (7.12 ) p. 3 toodud Balmeri-Rydbergi valemiga (3.1 ), mis saadud katses mõõdetud spektrite töötlemisel, näeme oivalist kokkulangevust. Järelikult kirjeldab Bohri - de Broglie’ aatomimudel vesiniku aatomit päris hästi. Ta selgitab mitte üksnes vesiniku joonspektrite tekkepõhjust ja struktuuri, vaid näitab õigesti kätte ka joonte lainepikkused. 

Valemi 7.9 tuletamine

Huvilistele, kes väikest rehkendust paljuks ei pane, toome ära ka valemi (7.9 ) tuletuskäigu. Lähtume avaldistest (7.7 ) ja (7.8 ). Avaldame neist rn. Mugavamaks teisendamiseks viime (7.8 ) kujusse 

Siit, avaldades m2v2n (7.7 )-st,

millest

Elektroni koguenergia  -dal statsionaarsel orbiidil rn liitub tema kineetilisest energiast Ekin=mv2n/2 ja potentsiaalsest energiast tuuma elektriväljas, mis avaldub kuju Epot=ke2/rn:

Võrrandist (7.8 ) leiame

seega

Teisendades avaldist (7.7 ), saame

Asetades vn sel kujul valemisse (7.8 ), osutub, et

Asendades rn  (7.13 )-st leitu koguenergia valemisse, tuleb välja

ehk

Asendades konstandid , , ja nende arvväärtustega, saamegi valemi (7.9 ).